================================================================
A fórmula para o cálculo de uma combinação de n valores combinados p a p é dada por
[tex]\Luge{\boxed{\mathbf{C_{n,p}=\dfrac{n!}{p! \cdot(n-p)!}}}[/tex]
No nosso caso
n = 7
p = 6
[tex]C_{n,p}=\dfrac{n!}{p! \cdot(n-p)!}\\\\\\C_{7,6}=\dfrac{7!}{6! \cdot(7-6)!}\\\\\\C_{7,6}=\dfrac{7!}{6! \cdot 1!}\\\\\\C_{7,6}=\dfrac{7!}{6! \cdot 1}\\\\\\C_{7,6}=\dfrac{7!}{6! }\\\\\\C_{7,6}=\dfrac{7\cdot 6!}{6!}\\\\\\Cancela\:\:o\:\:6!\\\\\\\mathbf{C_{7,6}=7}[/tex]
p = 1
[tex]C_{n,p}=\dfrac{n!}{p! \cdot(n-p)!}\\\\\\C_{7,1}=\dfrac{7!}{1! \cdot(7-1)!}\\\\\\C_{7,1}=\dfrac{7!}{1 \cdot 6!}\\\\\\C_{7,1}=\dfrac{7!}{6! }\\\\\\C_{7,1}=\dfrac{7\cdot 6!}{6!}\\\\\\Cancela\:\:o\:\:6!\\\\\\\mathbf{C_{7,1}=7}[/tex]
p = 5
[tex]C_{n,p}=\dfrac{n!}{p! \cdot(n-p)!}\\\\\\C_{7,5}=\dfrac{7!}{5! \cdot(7-5)!}\\\\\\C_{7,5}=\dfrac{7!}{5! \cdot 2!}\\\\\\\C_{7,5}=\dfrac{7!}{5! \cdot 2}\\\\\\C_{7,1}=\dfrac{7\cdot 6 \cdot 5!}{5! \cdot 2 }\\\\\\\\Cancela\:\:o\:\:5!\\\\\\C_{7,5}=\dfrac{7\cdot 6}{2 }\\\\\\C_{7,5}=\dfrac{42}{2 }\\\\\\\mathbf{C_{7,5}=21}[/tex]
No triângulo de Pascal:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
C₇,₆ = 7
C₇,₁ = 7
C₇,₅ = 21
================================================================
A fórmula para o cálculo de uma combinação de n valores combinados p a p é dada por
[tex]\Luge{\boxed{\mathbf{C_{n,p}=\dfrac{n!}{p! \cdot(n-p)!}}}[/tex]
No nosso caso
C₇,₆
n = 7
p = 6
[tex]C_{n,p}=\dfrac{n!}{p! \cdot(n-p)!}\\\\\\C_{7,6}=\dfrac{7!}{6! \cdot(7-6)!}\\\\\\C_{7,6}=\dfrac{7!}{6! \cdot 1!}\\\\\\C_{7,6}=\dfrac{7!}{6! \cdot 1}\\\\\\C_{7,6}=\dfrac{7!}{6! }\\\\\\C_{7,6}=\dfrac{7\cdot 6!}{6!}\\\\\\Cancela\:\:o\:\:6!\\\\\\\mathbf{C_{7,6}=7}[/tex]
C₇,₁
n = 7
p = 1
[tex]C_{n,p}=\dfrac{n!}{p! \cdot(n-p)!}\\\\\\C_{7,1}=\dfrac{7!}{1! \cdot(7-1)!}\\\\\\C_{7,1}=\dfrac{7!}{1 \cdot 6!}\\\\\\C_{7,1}=\dfrac{7!}{6! }\\\\\\C_{7,1}=\dfrac{7\cdot 6!}{6!}\\\\\\Cancela\:\:o\:\:6!\\\\\\\mathbf{C_{7,1}=7}[/tex]
C₇,₅
n = 7
p = 5
[tex]C_{n,p}=\dfrac{n!}{p! \cdot(n-p)!}\\\\\\C_{7,5}=\dfrac{7!}{5! \cdot(7-5)!}\\\\\\C_{7,5}=\dfrac{7!}{5! \cdot 2!}\\\\\\\C_{7,5}=\dfrac{7!}{5! \cdot 2}\\\\\\C_{7,1}=\dfrac{7\cdot 6 \cdot 5!}{5! \cdot 2 }\\\\\\\\Cancela\:\:o\:\:5!\\\\\\C_{7,5}=\dfrac{7\cdot 6}{2 }\\\\\\C_{7,5}=\dfrac{42}{2 }\\\\\\\mathbf{C_{7,5}=21}[/tex]
No triângulo de Pascal:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1