[tex] > \: resolucao \\ \\ \geqslant \: progressao \: \: aritmetica \\ \\ r = a2 - a1 \\ r = 18 - 12 \\ r = 6 \\ \\ = = = = = = = = = = = = = = = \\ \\ > \: o \: oitavo \: termo \: da \: pa \\ \\ an = a1 + (n - 1)r \\ an = 12 + (8 - 1)6 \\ an = 12 + 7 \times 6 \\ an = 12 + 42 \\ an = 54 \\ \\ \\ \geqslant \leqslant \geqslant \leqslant \geqslant \leqslant \geqslant \leqslant \geqslant \geqslant [/tex]
Copyright © 2025 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
oi, boa noite :) usando a fórmula do termo geral da PA, temos:[tex] > \: resolucao \\ \\ \geqslant \: progressao \: \: aritmetica \\ \\ r = a2 - a1 \\ r = 18 - 12 \\ r = 6 \\ \\ = = = = = = = = = = = = = = = \\ \\ > \: o \: oitavo \: termo \: da \: pa \\ \\ an = a1 + (n - 1)r \\ an = 12 + (8 - 1)6 \\ an = 12 + 7 \times 6 \\ an = 12 + 42 \\ an = 54 \\ \\ \\ \geqslant \leqslant \geqslant \leqslant \geqslant \leqslant \geqslant \leqslant \geqslant \geqslant [/tex]