[tex]\Large\mathsf\displaystyle{} - {3x}^{2} - 2x + 3 = 0 \\ \Large\mathsf\displaystyle{} {3x}^{2} + 2x - 3 = 0 \\ \Large\mathsf\displaystyle{}\begin{cases}a = 3 \\ b = 2 \\ c = - 3\end{cases} \\ \\ \Large\mathsf\displaystyle{}x = \dfrac{ - 2 \pm \sqrt{ {2}^{2} - 4\cdot3\cdot\left( - 3\right) } }{2\cdot3} \\\\ \\ \Large\mathsf\displaystyle{}x = \dfrac{ - 2 \pm \sqrt{4 + 36} }{6} \\\\ \\ \Large\mathsf\displaystyle{}x = \dfrac{ - 2 \pm \sqrt{40} }{6} \\\\ \\ \Large\mathsf\displaystyle{}x = \dfrac{ - 2 \pm2 \sqrt{10} }{6} \\\\ \\ \Large\mathsf\displaystyle{}x = \dfrac{ - 2 + 2 \sqrt{10} }{6} \\\\ \Large\mathsf\displaystyle{}x = \dfrac{ - 2 - 2 \sqrt{10} }{6} \\\\ \\ \Large\mathsf\displaystyle{}x = \dfrac{ - 1 + \sqrt{10} }{3} \\ \\ \Large\mathsf\displaystyle{}x = \frac{ - 1 - \sqrt{10} }{3} [/tex]
Solução:
[tex]\Large\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{ x_{1} = \frac{ - 1 - \sqrt{10} }{3} }}}\end{gathered}$} [/tex]
[tex]\Large\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{ x_{2} = \frac{ - 1 + \sqrt{10} }{3} }}}\end{gathered}$} [/tex]
[tex]\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{{ \red{Bons}} \blue{\:Estudos}}}}\end{gathered}$} [/tex]
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
[tex]\Large\mathsf\displaystyle{} - {3x}^{2} - 2x + 3 = 0 \\ \Large\mathsf\displaystyle{} {3x}^{2} + 2x - 3 = 0 \\ \Large\mathsf\displaystyle{}\begin{cases}a = 3 \\ b = 2 \\ c = - 3\end{cases} \\ \\ \Large\mathsf\displaystyle{}x = \dfrac{ - 2 \pm \sqrt{ {2}^{2} - 4\cdot3\cdot\left( - 3\right) } }{2\cdot3} \\\\ \\ \Large\mathsf\displaystyle{}x = \dfrac{ - 2 \pm \sqrt{4 + 36} }{6} \\\\ \\ \Large\mathsf\displaystyle{}x = \dfrac{ - 2 \pm \sqrt{40} }{6} \\\\ \\ \Large\mathsf\displaystyle{}x = \dfrac{ - 2 \pm2 \sqrt{10} }{6} \\\\ \\ \Large\mathsf\displaystyle{}x = \dfrac{ - 2 + 2 \sqrt{10} }{6} \\\\ \Large\mathsf\displaystyle{}x = \dfrac{ - 2 - 2 \sqrt{10} }{6} \\\\ \\ \Large\mathsf\displaystyle{}x = \dfrac{ - 1 + \sqrt{10} }{3} \\ \\ \Large\mathsf\displaystyle{}x = \frac{ - 1 - \sqrt{10} }{3} [/tex]
Solução:
[tex]\Large\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{ x_{1} = \frac{ - 1 - \sqrt{10} }{3} }}}\end{gathered}$} [/tex]
[tex]\Large\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{ x_{2} = \frac{ - 1 + \sqrt{10} }{3} }}}\end{gathered}$} [/tex]
[tex]\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{{ \red{Bons}} \blue{\:Estudos}}}}\end{gathered}$} [/tex]