Há algumas regras sobre o cálculo de limite, como a regra da soma. Considerando que L, M, c e k são números reais e stack lim space with x rightwards arrow c below 3 x ² equals L e stack lim space with x rightwards arrow c below space 3 x plus 2 equals M, então, temos algumas regras, como a regra da soma, que descreve que o limite da soma de duas funções é a soma de seus limites. Aplicando as regras podemos desenvolver algumas relações. 1 – stack lim space with x rightwards arrow c below space 9 x ³ plus 6 x ² equals
2 – stack lim space with x rightwards arrow c below space 21 x ² equals
3 – stack lim space with x rightwards arrow c below space left parenthesis begin inline style fraction numerator 9 x ² over denominator 9 x plus 6 end fraction end style right parenthesis equals
4 – stack lim space with x rightwards arrow c below space 3 x ² plus 3 x plus 2 equals
I . L plus M.
II . L times M.
III .space 3 begin inline style L over M end style.
IV . 7 L .
Categorize os grupos e assinale a alternativa que relaciona, adequadamente, os dois grupos de informação.
Usando as regras de cálculo de limite, podemos resolver cada item:
1- stack lim space with x rightwards arrow c below space 9 x ³ plus 6 x ²
= 9 stack lim space with x rightwards arrow c below space x ³ plus 2 x ²
= 9c³ + 18c²
2- stack lim space with x rightwards arrow c below space 21 x ²
= 21 stack lim space with x rightwards arrow c below space x ²
= 21c²
3- stack lim space with x rightwards arrow c below space left parenthesis begin inline style fraction numerator 9 x ² over denominator 9 x plus 6 end fraction end style right parenthesis
= stack lim space with x rightwards arrow c below space left parenthesis begin inline style fraction numerator x ² over denominator x + 2/3 end fraction end style right parenthesis
= c²/(c+2/3)
4- stack lim space with x rightwards arrow c below space 3 x ² plus 3 x plus 2
= stack lim space with x rightwards arrow c below space 3 x ² + stack lim space with x rightwards arrow c below space 3 x + 2
= 3c² + 3c + 2
Agora, relacionando os grupos de informações:
I. L + M é igual a 9c³ + 18c² + 21c² = 9c³ + 39c².
II. L x M é igual a (9c²) x (3c² + 3c + 2) = 27c⁴ + 27c³ + 18c².
III. 3L/M é igual a 3(9c³ + 18c²)/(21c²) = (27c³ + 54c²)/(7c²).
Lista de comentários
Resposta:
Usando as regras de cálculo de limite, podemos resolver cada item:
1- stack lim space with x rightwards arrow c below space 9 x ³ plus 6 x ²
= 9 stack lim space with x rightwards arrow c below space x ³ plus 2 x ²
= 9c³ + 18c²
2- stack lim space with x rightwards arrow c below space 21 x ²
= 21 stack lim space with x rightwards arrow c below space x ²
= 21c²
3- stack lim space with x rightwards arrow c below space left parenthesis begin inline style fraction numerator 9 x ² over denominator 9 x plus 6 end fraction end style right parenthesis
= stack lim space with x rightwards arrow c below space left parenthesis begin inline style fraction numerator x ² over denominator x + 2/3 end fraction end style right parenthesis
= c²/(c+2/3)
4- stack lim space with x rightwards arrow c below space 3 x ² plus 3 x plus 2
= stack lim space with x rightwards arrow c below space 3 x ² + stack lim space with x rightwards arrow c below space 3 x + 2
= 3c² + 3c + 2
Agora, relacionando os grupos de informações:
I. L + M é igual a 9c³ + 18c² + 21c² = 9c³ + 39c².
II. L x M é igual a (9c²) x (3c² + 3c + 2) = 27c⁴ + 27c³ + 18c².
III. 3L/M é igual a 3(9c³ + 18c²)/(21c²) = (27c³ + 54c²)/(7c²).
IV. 7L é igual a 7(9c³ + 18c²) = 63c³ + 126c².
Portanto, a alternativa correta é a letra A:
a. 1 - II; 2 - IV; 3 - III; 4 - I.
Resposta:
1 - II; 2 - IV; 3 - III; 4 - I
Explicação passo a passo: