Massa: 500g --> 0,5kg
Frequência angular: ω = 2π
ω = 2π/T
logo T = 1s
Utilizando a fórmula do Período do MHS:
[tex]T=2\pi \sqrt{\frac{m}{K} } \\\\1=2\pi \sqrt{\frac{0,5}{K} } \\\\\\\frac{1}{2\pi } = \sqrt{\frac{1}{2K}}\\\\2\pi = \sqrt{2K} \\\\(2\pi) ^{2} = (\sqrt{2K} )^{2}\\ \\4\pi^{2} = 2K\\\\K = \frac{4\pi^{2} }{2} \\\\K=2.10\\\\K=20N/m[/tex]
Letra E
Copyright © 2025 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Massa: 500g --> 0,5kg
Frequência angular: ω = 2π
ω = 2π/T
logo T = 1s
Utilizando a fórmula do Período do MHS:
[tex]T=2\pi \sqrt{\frac{m}{K} } \\\\1=2\pi \sqrt{\frac{0,5}{K} } \\\\\\\frac{1}{2\pi } = \sqrt{\frac{1}{2K}}\\\\2\pi = \sqrt{2K} \\\\(2\pi) ^{2} = (\sqrt{2K} )^{2}\\ \\4\pi^{2} = 2K\\\\K = \frac{4\pi^{2} }{2} \\\\K=2.10\\\\K=20N/m[/tex]
Letra E