Articles
Register
Sign In
Search
memicm105
@memicm105
January 2021
1
67
Report
Pouvez vous m'aider pour ce dm s'il vous plaît
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
taalbabachir
Verified answer
1) calculer sin (x)
sin (x) = JH/SH
Il faut chercher JH et SH
SA/SJ = AF/JH ⇔ SA x JH = SJ x AF ⇒ JH = SJ x AF/SA = 12 x 2/6 = 4 m
Appliquons le théorème de Pythagore
SH² = SJ² + JH² = 12² + 4² = 144 + 16 = 160 ⇒ SH = √160 = 4√10 m
sin (x) = JH/SH = 4/4√10 = 1/√10
2) en déduire les 2 valeurs possibles de cos (x)
cos² (x) + sin² (x) = 1 ⇒ cos² (x) = 1 - sin²(x) = 1 - (1/√10)² = 1 - 1/10 = 9/10
cos² (x) = 9/10 ⇒ cos (x) = √9/10 et cos (x) = - √9/10
cos (x) = 3/√10 ; cos (x) = - 3/√10
3) calculer la tan (x) en fonction de la longueur HJ
tan (x) = HJ/SH = HJ/12
4) en déduire HJ en fonction de tan (x)
HJ/12 = tan (x) ⇒ HJ = 12 x tan (x)
5) en déduire les 2 valeurs possibles de tan (x) et donc les deux valeurs de HJ possibles
tan (x) = sin (x)/cos (x)
sin (x) = 1/√10
cos (x) = cos (x) = 3/√10 ; cos (x) = - 3/√10
tan (x) = 1/√10/3/√10 = 1/3
tan (x) = -1/√10/3/√10 = -1/3
HJ = 12 x tan (x) = 12 x 1/3 = 4 m
HJ = 12 x tan (x) = - 12 x 1/3 = - 4 m
1 votes
Thanks 1
More Questions From This User
See All
memicm105
January 2021 | 0 Respostas
Pouvez vous m'aidez pour cet exercice svp
Responda
memicm105
January 2021 | 0 Respostas
Responda
Memicm105
June 2019 | 0 Respostas
Responda
Memicm105
May 2019 | 0 Respostas
Pouvez vous m'aider pour l'exercice 2 (niveau 2nd)
Responda
Memicm105
May 2019 | 0 Respostas
Responda
Memicm105
May 2019 | 0 Respostas
Responda
Memicm105
May 2019 | 0 Respostas
Responda
Memicm105
May 2019 | 0 Respostas
Responda
×
Report "Pouvez vous m'aider pour ce dm s'il vous plaît.... Pergunta de ideia de memicm105"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
1) calculer sin (x)sin (x) = JH/SH
Il faut chercher JH et SH
SA/SJ = AF/JH ⇔ SA x JH = SJ x AF ⇒ JH = SJ x AF/SA = 12 x 2/6 = 4 m
Appliquons le théorème de Pythagore
SH² = SJ² + JH² = 12² + 4² = 144 + 16 = 160 ⇒ SH = √160 = 4√10 m
sin (x) = JH/SH = 4/4√10 = 1/√10
2) en déduire les 2 valeurs possibles de cos (x)
cos² (x) + sin² (x) = 1 ⇒ cos² (x) = 1 - sin²(x) = 1 - (1/√10)² = 1 - 1/10 = 9/10
cos² (x) = 9/10 ⇒ cos (x) = √9/10 et cos (x) = - √9/10
cos (x) = 3/√10 ; cos (x) = - 3/√10
3) calculer la tan (x) en fonction de la longueur HJ
tan (x) = HJ/SH = HJ/12
4) en déduire HJ en fonction de tan (x)
HJ/12 = tan (x) ⇒ HJ = 12 x tan (x)
5) en déduire les 2 valeurs possibles de tan (x) et donc les deux valeurs de HJ possibles
tan (x) = sin (x)/cos (x)
sin (x) = 1/√10
cos (x) = cos (x) = 3/√10 ; cos (x) = - 3/√10
tan (x) = 1/√10/3/√10 = 1/3
tan (x) = -1/√10/3/√10 = -1/3
HJ = 12 x tan (x) = 12 x 1/3 = 4 m
HJ = 12 x tan (x) = - 12 x 1/3 = - 4 m