Resposta:
[tex]\textsf{Leia abaixo}[/tex]
Explicação passo a passo:
[tex]\mathsf{(4^0 \div 4^{-1}) \div (4^{-1} \div 4^{-2}) }[/tex]
[tex]\mathsf{(4^{0-(-1)}) \div (4^{-1-(-2)}) }[/tex]
[tex]\mathsf{(4^{0 + 1}) \div (4^{-1+2}) }[/tex]
[tex]\mathsf{(4^{1}) \div (4^{1}) }[/tex]
[tex]\mathsf{4 \div 4 }[/tex]
[tex]\boxed{\boxed{\mathsf{1}}}[/tex]
[tex]\dfrac{-2^4 + 0^4 + 4^0}{(-2)^4 + \dfrac{1}{2}^{-2}}[/tex]
[tex]\dfrac{-2^4 + 0 + 1}{(-2)^4 + 2^{2}}[/tex]
[tex]\dfrac{-16 + 0 + 1}{16+ 4}[/tex]
[tex]-\dfrac{15 \div 5}{20 \div 5}[/tex]
[tex]\boxed{\boxed{\mathsf{-\dfrac{3}{4}}}}[/tex]
a)
[tex] = (4 {}^{0} \div 4 {}^{ - 1} ) \div (4 {}^{ - 1} \div 4 {}^{ - 2} ) \\ = (1 \div 4 {}^{ - 1} ) \div (4 {}^{ - 1} \div 4 {}^{ - 2} ) \\ = (1 \div 4 {}^{ - 1} ) \div (4 {}^{ - 1 - ( - 2)} ) \\ = (1 \div 4 {}^{ - 1} ) \div (4 {}^{ - 1 + 2} ) \\ = (1 \div 4 {}^{ - 1} ) \div (4 {}^{1}) \\ = (1 \div 4 {}^{ - 1} ) \div 4 \\ = 4 {}^{ 1} \div 4 \\ = 4 \div 4 \\ = \boxed{ 1} \\ [/tex]
c)
[tex] = \frac{ - 2 {}^{4} + 0 {}^{4} + 4 {}^{0} }{( - 2) {}^{4} + \frac{1}{2} - 2 } \\ = \frac{ - 16 + 0 + 1}{16 + \frac{1}{2} - 2} \\ = \frac{ - 15}{14 + \frac{1}{2} } \\ = \frac{ - 15}{ \frac{28 + 1}{2} } \\ = \frac{ - 15}{ \frac{29}{2} } \\ = - 15 \div \frac{29}{2} \\ = - 15 \: . \: \frac{2}{29} \\ = - \frac{15 \: . \: 2}{29} \\ = \boxed{ - \frac{30}{29} }[/tex]
Att. YRZ
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Resposta:
[tex]\textsf{Leia abaixo}[/tex]
Explicação passo a passo:
[tex]\mathsf{(4^0 \div 4^{-1}) \div (4^{-1} \div 4^{-2}) }[/tex]
[tex]\mathsf{(4^{0-(-1)}) \div (4^{-1-(-2)}) }[/tex]
[tex]\mathsf{(4^{0 + 1}) \div (4^{-1+2}) }[/tex]
[tex]\mathsf{(4^{1}) \div (4^{1}) }[/tex]
[tex]\mathsf{4 \div 4 }[/tex]
[tex]\boxed{\boxed{\mathsf{1}}}[/tex]
[tex]\dfrac{-2^4 + 0^4 + 4^0}{(-2)^4 + \dfrac{1}{2}^{-2}}[/tex]
[tex]\dfrac{-2^4 + 0 + 1}{(-2)^4 + 2^{2}}[/tex]
[tex]\dfrac{-16 + 0 + 1}{16+ 4}[/tex]
[tex]-\dfrac{15 \div 5}{20 \div 5}[/tex]
[tex]\boxed{\boxed{\mathsf{-\dfrac{3}{4}}}}[/tex]
a)
[tex] = (4 {}^{0} \div 4 {}^{ - 1} ) \div (4 {}^{ - 1} \div 4 {}^{ - 2} ) \\ = (1 \div 4 {}^{ - 1} ) \div (4 {}^{ - 1} \div 4 {}^{ - 2} ) \\ = (1 \div 4 {}^{ - 1} ) \div (4 {}^{ - 1 - ( - 2)} ) \\ = (1 \div 4 {}^{ - 1} ) \div (4 {}^{ - 1 + 2} ) \\ = (1 \div 4 {}^{ - 1} ) \div (4 {}^{1}) \\ = (1 \div 4 {}^{ - 1} ) \div 4 \\ = 4 {}^{ 1} \div 4 \\ = 4 \div 4 \\ = \boxed{ 1} \\ [/tex]
c)
[tex] = \frac{ - 2 {}^{4} + 0 {}^{4} + 4 {}^{0} }{( - 2) {}^{4} + \frac{1}{2} - 2 } \\ = \frac{ - 16 + 0 + 1}{16 + \frac{1}{2} - 2} \\ = \frac{ - 15}{14 + \frac{1}{2} } \\ = \frac{ - 15}{ \frac{28 + 1}{2} } \\ = \frac{ - 15}{ \frac{29}{2} } \\ = - 15 \div \frac{29}{2} \\ = - 15 \: . \: \frac{2}{29} \\ = - \frac{15 \: . \: 2}{29} \\ = \boxed{ - \frac{30}{29} }[/tex]
Att. YRZ