Resposta:
Usando a regra de L'Hôpital, temos:
lim
x→\22
f(x) = lim
\dfrac{1}{x^2} = \dfrac{1}{4}
E usando a propriedade do limite do produto, temos:
x
\dfrac{x}{x^2} = lim
\dfrac{1}{x} = 0
Portanto, o limite de x f(x) quando x tende a 2/2 é igual a zero.
[tex]\displaystyle \sf \boxed{\begin{matrix}\text{Propriedade de limites}: \\\\ \displaystyle \sf \lim_{x\to a}\left[f(x)\cdot g(x)\right]=\lim_{x\to a}f(x)\cdot \lim_{x\to a}g(x) \end{matrix}}\\\\\\ temos :\\\\ \lim_{x\to 2}\frac{f(x)}{x} = 1 \ \ ;\ \ \lim_{x\to 2}\frac{f(x)}{x^2}= k = \ ? \\\\\ \text{Fa\c camos} : \\\\ k = \lim_{x\to 2}\frac{f(x)}{x^2}[/tex]
[tex]\displaystyle \sf k = \lim_{x\to 2}\left[\frac{f(x)}{x}\cdot \frac{1}{x}\right]\\\\\\ k = \lim_{x\to 2}\frac{f(x)}{x}\cdot \lim_{x\to 2}\frac{1}{x} \\\\\\ k = 1\cdot \frac{1}{2} \\\\\\ k = \frac{1}{2}\\\\\ Portanto : \\\\ \Large\boxed{\sf \ \lim_{x\to 2}\frac{f(x)}{x^2} =\frac{1}{2}\ }\checkmark[/tex]
Copyright © 2025 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Resposta:
Usando a regra de L'Hôpital, temos:
lim
x→\22
f(x) = lim
x→\22
\dfrac{1}{x^2} = \dfrac{1}{4}
E usando a propriedade do limite do produto, temos:
lim
x→\22
x
f(x) = lim
x→\22
\dfrac{x}{x^2} = lim
x→\22
\dfrac{1}{x} = 0
Portanto, o limite de x f(x) quando x tende a 2/2 é igual a zero.
[tex]\displaystyle \sf \boxed{\begin{matrix}\text{Propriedade de limites}: \\\\ \displaystyle \sf \lim_{x\to a}\left[f(x)\cdot g(x)\right]=\lim_{x\to a}f(x)\cdot \lim_{x\to a}g(x) \end{matrix}}\\\\\\ temos :\\\\ \lim_{x\to 2}\frac{f(x)}{x} = 1 \ \ ;\ \ \lim_{x\to 2}\frac{f(x)}{x^2}= k = \ ? \\\\\ \text{Fa\c camos} : \\\\ k = \lim_{x\to 2}\frac{f(x)}{x^2}[/tex]
[tex]\displaystyle \sf k = \lim_{x\to 2}\left[\frac{f(x)}{x}\cdot \frac{1}{x}\right]\\\\\\ k = \lim_{x\to 2}\frac{f(x)}{x}\cdot \lim_{x\to 2}\frac{1}{x} \\\\\\ k = 1\cdot \frac{1}{2} \\\\\\ k = \frac{1}{2}\\\\\ Portanto : \\\\ \Large\boxed{\sf \ \lim_{x\to 2}\frac{f(x)}{x^2} =\frac{1}{2}\ }\checkmark[/tex]