Uma placa foi colocada no topo de um prédio de 30 metros de altura. Um observador de 1,75 metros de altura vê a placa sob os ângulos de α e 45º em relação à horizontal, conforme mostra a figura abaixo. Sabendo que o observador está a 32 metros do prédio, o valor da altura da placa, em metros, está compreendido entre quais valores? Use tg α = 0,88, caso necessário.
Pela razãotrigonométricatangente, foi possível descobrir que a altura da placa é um valor compreendido entre 3,65 e 3,95. Logo, a opção A está correta.
Razões trigonométricas
Na figura, x representa a altura da placa e y, a parte da altura do prédio.
No triângulo retângulo ABC, podemos utilizar a razão tangente para descobrir a altura y.
tg θ = cateto oposto
cateto adjacente
tg α = y
32
0,88 = y
32
y = 0,88·32
y = 28,16 m
Utilizando de novo a razão tangente, mas agora no triângulo retângulo CDE, temos:
Lista de comentários
Pela razão trigonométrica tangente, foi possível descobrir que a altura da placa é um valor compreendido entre 3,65 e 3,95. Logo, a opção A está correta.
Razões trigonométricas
Na figura, x representa a altura da placa e y, a parte da altura do prédio.
No triângulo retângulo ABC, podemos utilizar a razão tangente para descobrir a altura y.
tg θ = cateto oposto
cateto adjacente
tg α = y
32
0,88 = y
32
y = 0,88·32
y = 28,16 m
Utilizando de novo a razão tangente, mas agora no triângulo retângulo CDE, temos:
tg 45° = x + y
32
1 = x + y
32
x + y = 32
x = 32 - y
x = 32 - 28,16
x = 3,84 m
Logo, está no intervalo:
3,65 < 3,84 < 3,95
Mais sobre razões trigonométricas em:
https://brainly.com.br/tarefa/20622711
#SPJ13