Resposta:
x1 = (7 + √21) / 2
x2 = (7 - √21) / 2
Explicação passo a passo:
Claro! Vamos resolver a equação para encontrar o valor de x.
Começamos trazendo todos os termos para um lado da equação:
x^2 + 4 = 7x - 3
Reorganizando os termos, obtemos:
x^2 - 7x + 4 + 3 = 0
Simplificando:
x^2 - 7x + 7 = 0
Agora podemos resolver a equação de segundo grau utilizando a fórmula quadrática:
x = (-b ± √(b^2 - 4ac)) / (2a)
No nosso caso, a = 1, b = -7 e c = 7. Substituindo esses valores na fórmula, temos:
x = (7 ± √((-7)^2 - 4 * 1 * 7)) / (2 * 1)
x = (7 ± √(49 - 28)) / 2
x = (7 ± √21) / 2
Portanto, as soluções para a equação são:
Essas são as soluções para a equação dada.
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Resposta:
x1 = (7 + √21) / 2
x2 = (7 - √21) / 2
Explicação passo a passo:
Claro! Vamos resolver a equação para encontrar o valor de x.
Começamos trazendo todos os termos para um lado da equação:
x^2 + 4 = 7x - 3
Reorganizando os termos, obtemos:
x^2 - 7x + 4 + 3 = 0
Simplificando:
x^2 - 7x + 7 = 0
Agora podemos resolver a equação de segundo grau utilizando a fórmula quadrática:
x = (-b ± √(b^2 - 4ac)) / (2a)
No nosso caso, a = 1, b = -7 e c = 7. Substituindo esses valores na fórmula, temos:
x = (7 ± √((-7)^2 - 4 * 1 * 7)) / (2 * 1)
x = (7 ± √(49 - 28)) / 2
x = (7 ± √21) / 2
Portanto, as soluções para a equação são:
x1 = (7 + √21) / 2
x2 = (7 - √21) / 2
Essas são as soluções para a equação dada.