Articles
Register
Sign In
Search
MrCouscous
@MrCouscous
May 2019
2
54
Report
Bonjour, je n'arrive pas à faire cet exercice :
Dans un triangle JKL rectangle en K on a :
sin J = 12/13
Sin L = 5/13
JK = 5 cm
1. Dessiner ce triangle en vraie grandeur
2. Donner la valeur exacte de Cos J, de Cos L, Tan J et de Tan L
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
darkvador103
Verified answer
(1) sin L = JK/JL = 5/JL = 5/13 donc JL = 13 cm.
sin J = KL/JL = KL/13 = 12/13 donc KL = 12 cm.
cos² J +sin²J = 1 donc cos J = √(1-(12/13)²) = √(1-(144/169)) = √(25/169) = 5/13
cos² L+sin²L = 1 donc de même on trouve cos L = 12/13
tan J = sin J /cos J = 12/5
tan L = 5/12
5 votes
Thanks 5
aymanemaysae
Verified answer
Bonjour ;
1)
Veuillez-voir le fichier ci-joint .
2)
cos(J) = cos(π/2 - L) = sin(L) = 5/13 .
cos(L) = cos(π/2 - J) = sin(J) = 12/13 .
tan(J) = (12/13) / (5/13) = 12/5 .
tan(L) = (5/13) / (12/13) = 5/12 .
1 votes
Thanks 0
More Questions From This User
See All
MrCouscous
January 2021 | 0 Respostas
Responda
MrCouscous
January 2021 | 0 Respostas
Responda
MrCouscous
January 2021 | 0 Respostas
Responda
MrCouscous
January 2021 | 0 Respostas
Responda
MrCouscous
January 2021 | 0 Respostas
Responda
MrCouscous
October 2020 | 0 Respostas
Responda
MrCouscous
June 2019 | 0 Respostas
Responda
MrCouscous
June 2019 | 0 Respostas
Responda
MrCouscous
June 2019 | 0 Respostas
Responda
MrCouscous
May 2019 | 0 Respostas
Responda
×
Report "Bonjour, je n'arrive pas à faire cet exercice : Dans un triangle JKL rectangle en K on a : sin J = .... Pergunta de ideia de MrCouscous"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
(1) sin L = JK/JL = 5/JL = 5/13 donc JL = 13 cm.sin J = KL/JL = KL/13 = 12/13 donc KL = 12 cm.
cos² J +sin²J = 1 donc cos J = √(1-(12/13)²) = √(1-(144/169)) = √(25/169) = 5/13
cos² L+sin²L = 1 donc de même on trouve cos L = 12/13
tan J = sin J /cos J = 12/5
tan L = 5/12
Verified answer
Bonjour ;1)
Veuillez-voir le fichier ci-joint .
2)
cos(J) = cos(π/2 - L) = sin(L) = 5/13 .
cos(L) = cos(π/2 - J) = sin(J) = 12/13 .
tan(J) = (12/13) / (5/13) = 12/5 .
tan(L) = (5/13) / (12/13) = 5/12 .