Bonsoir pourriez-vous m'aider pour cette exercice :
On considère la fonction f définie sur l'intervalle ]0; +∞] par : f(x) = x + 4 - 4 In(x) - 3/x où In désigne la fonction logarithme népérien. On note C la représentation graphique de f dans un repère orthonormé. 1. Déterminer la limite de la fonction f en +∞. 2. On admet que la fonction f est dérivable sur ]0; +∞[ et on note f' sa fonction dérivée. Démontrer que, pour tout nombre réel x > 0, on a : f'(x) = (x² - 4x + 3) / x² 3. a. Donner le tableau de variations de la fonction f sur l'intervalle ]0; +∞[. On y fera figurer les valeurs exactes des extremums et les limites de f en 0 et en +∞. On admettra que lim (x->0) f(x) = -∞. b. Par simple lecture du tableau de variations, préciser le nombre de solutions de l'équation f(x) = 5/3. 4. Etudier la convexité de la fonction f, c'est-à-dire préciser les parties de l'intervalle ]0; +∞[ sur lesquelles f est convexe, et celles sur lesquelles f est concave. On justifiera que la courbe C admet un unique point d'inflexion, dont on précisera les coordonnées.
Lista de comentários
Réponse :
Explications étape par étape :
Bonjour,
Voici la réponse en pièce-jointe !
En espérant t'avoir aidé, n'hésite pas à poser des questions si besoin.