Quando derivamos diversas vezes uma função circular como seno e cosseno, vimos que as derivadas alternam entre senos e cossenos, seguindo um padrão interminável. Um exemplo disso é derivar uma função cosseno duas vezes, onde na primeira vez ela se torna uma função seno e, na segunda, novamente uma função cosseno. Entender esse padrão permite o cálculo das derivadas de maneira mais rápida e simples.

Considerando as funções f(x) = sen(x), g(x) = cos(2x), h(x) = sen(3x), e com base nos seus conhecimentos acerca da regra da cadeia e da interpretação geométrica dos conceitos estudados em cálculo diferencial e integral, analise as afirmativas a seguir e assinale V para a(s) verdadeira(s) e F para a(s) falsa(s).

I. ( ) A derivada de h(x) é h’(x) = cos(3x)/3.

II. ( ) A tangente do ângulo de inclinação da reta tangente a f(x,) no ponto onde x = 0, é igual a 0.

III. ( ) f(g(h(x))) tem derivada igual a −6sen(2sen(3x))cos(3x)* cos(cos(2sen(3x))).

IV. ( ) f’’(x) = -f(x).

Agora, assinale a alternativa que apresenta a sequência correta:
Please enter comments
Please enter your name.
Please enter the correct email address.
You must agree before submitting.

Lista de comentários


More Questions From This User See All

Helpful Social

Copyright © 2025 ELIBRARY.TIPS - All rights reserved.