A)
[tex] {1080}^{o} \\ {1080}^{o} \times \frac{\pi}{ {180}^{o} } rad \\ \frac{1080 {}^{o} }{180 {}^{o} } \pi rad \\ \boxed{6\pi rad}[/tex]
B)
[tex]1500 {}^{o} \\ {1500 ^{o} }^{ \div 60} \times \frac{\pi}{ {180}^{o}{ }^{ \div 60} } rad \\ 25 \times \frac{\pi}{3} rad \\ \boxed{ \frac{25\pi}{3}rad }[/tex]
C)
[tex] \frac{8\pi}{5} rad \\ \frac{8\pi}{5} rad \times \frac{ {180}^{o} }{\pi rad} \\ \frac{8 \cancel\pi}{5} \times \frac{ {180}^{o} }{ \cancel\pi} \\ \frac{8}{ \cancel5} \times { \cancel{180}^{o} } \\ 8 \times {36}^{o} \\ \boxed{ {288}^{o} }[/tex]
D)
[tex] \frac{11\pi}{6} rad \\ \frac{11\pi}{6} rad \times \frac{ {180}^{o} }{\pi rad} \\ \frac{11\pi}{6} \times \frac{ {180}^{o} }{\pi} \\ \frac{11}{ \cancel6} \times \cancel{{180}^{o} } \\ 11 \times {30}^{o} \\ \boxed{ {330}^{o} }[/tex]
E)
[tex] \frac{7\pi}{3} rad \\ \frac{7\pi}{3} rad \times \frac{ {180}^{o} }{\pi rad} \\ \frac{7\pi}{3} \times \frac{ {180}^{o} }{\pi} \\ \frac{7}{ \cancel3} \times \cancel{ {180}^{o} } \\ 7 \times {60}^{o} \\ \boxed{ {420}^{o} }[/tex]
[tex]{\huge\boxed { {\bf{E}}}\boxed { \red {\bf{a}}} \boxed { \blue {\bf{s}}} \boxed { \gray{\bf{y}}} \boxed { \red {\bf{}}} \boxed { \orange {\bf{M}}} \boxed {\bf{a}}}{\huge\boxed { {\bf{t}}}\boxed { \red {\bf{h}}}} \\ \boxed{ \displaystyle\int_ \empty ^ \mathbb{C} \frac{ - b \: ± \: \sqrt{ {b}^{2} - 4 \times a \times c } }{2 \times a} d{ t } \boxed{ \boxed{ \mathbb{\displaystyle\Re}\sf{ \gamma \alpha }\tt{ \pi}\bf{ \nabla}}}} \\ {\boxed{ \color{blue} \boxed{ 30 |10|22 }}}{\boxed{ \color{blue} \boxed{Espero \: ter \: ajudado \: ☆}}}[/tex]
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
A)
[tex] {1080}^{o} \\ {1080}^{o} \times \frac{\pi}{ {180}^{o} } rad \\ \frac{1080 {}^{o} }{180 {}^{o} } \pi rad \\ \boxed{6\pi rad}[/tex]
B)
[tex]1500 {}^{o} \\ {1500 ^{o} }^{ \div 60} \times \frac{\pi}{ {180}^{o}{ }^{ \div 60} } rad \\ 25 \times \frac{\pi}{3} rad \\ \boxed{ \frac{25\pi}{3}rad }[/tex]
C)
[tex] \frac{8\pi}{5} rad \\ \frac{8\pi}{5} rad \times \frac{ {180}^{o} }{\pi rad} \\ \frac{8 \cancel\pi}{5} \times \frac{ {180}^{o} }{ \cancel\pi} \\ \frac{8}{ \cancel5} \times { \cancel{180}^{o} } \\ 8 \times {36}^{o} \\ \boxed{ {288}^{o} }[/tex]
D)
[tex] \frac{11\pi}{6} rad \\ \frac{11\pi}{6} rad \times \frac{ {180}^{o} }{\pi rad} \\ \frac{11\pi}{6} \times \frac{ {180}^{o} }{\pi} \\ \frac{11}{ \cancel6} \times \cancel{{180}^{o} } \\ 11 \times {30}^{o} \\ \boxed{ {330}^{o} }[/tex]
E)
[tex] \frac{7\pi}{3} rad \\ \frac{7\pi}{3} rad \times \frac{ {180}^{o} }{\pi rad} \\ \frac{7\pi}{3} \times \frac{ {180}^{o} }{\pi} \\ \frac{7}{ \cancel3} \times \cancel{ {180}^{o} } \\ 7 \times {60}^{o} \\ \boxed{ {420}^{o} }[/tex]
[tex]{\huge\boxed { {\bf{E}}}\boxed { \red {\bf{a}}} \boxed { \blue {\bf{s}}} \boxed { \gray{\bf{y}}} \boxed { \red {\bf{}}} \boxed { \orange {\bf{M}}} \boxed {\bf{a}}}{\huge\boxed { {\bf{t}}}\boxed { \red {\bf{h}}}} \\ \boxed{ \displaystyle\int_ \empty ^ \mathbb{C} \frac{ - b \: ± \: \sqrt{ {b}^{2} - 4 \times a \times c } }{2 \times a} d{ t } \boxed{ \boxed{ \mathbb{\displaystyle\Re}\sf{ \gamma \alpha }\tt{ \pi}\bf{ \nabla}}}} \\ {\boxed{ \color{blue} \boxed{ 30 |10|22 }}}{\boxed{ \color{blue} \boxed{Espero \: ter \: ajudado \: ☆}}}[/tex]