January 2021 0 154 Report
Bonsoir, j'ai essayé de faire cet exercice sur les suites arithmétiques mais je ne sais pas si ce que j'ai fait est juste et je n'arrive plus aux deux dernières questions... merci de bien vouloir m'aider (c'est la 2e fois que je poste ce message, merci à celui ou celle qui voudra bien m'aider) donc voilà les questions et ce que j'ai répondu :

On considère la suite (Un) , définie sur ℕ par U0 = 1 et pour tout entier naturel n, un+1=3 Un−1/Un+5
1. Calculer u1, u2 et u3
U1 = 3*U0-1/U0+5 = 3*1-1/1+5 = 1/3
U2= 3*U1 - 1/ U1+5 = 0
U3= 3*U2- 1/ U2+5= -1/5

2. a) On considère la suite (vn) définie sur ℕ par vn= 1un+1 si un≠−1 . Calculer v0, v1 et v2.
v0 = 1/U0+1 = 1/1+1= 1/2
v1 = 1/U1+1 = 1/ 1/3+1= 3/4
v2 = 1/U2+1 = 1/ 0+1= 1
v3 = 1/U3+1 = 1/ -1/5+1 = 5/4

et enfin, les questions où je bloque...
b) Prouver que (vn) est arithmétique.
c) Exprimer vn en fonction de n , en déduire l'expression de un en fonction de n.

merci d'avance !
Please enter comments
Please enter your name.
Please enter the correct email address.
You must agree before submitting.
More Questions From This User See All
Bonjour tout le monde, j'aurais vraiment besoin de votre aide sur le dernier exercice de mon dm, car il est en partie fait mais les réponses ne coïncident pas, elles m'ont l'air fausses et je ne trouve rien d'autre... je n'arrive pas à répondre à la dernière question aussi, et un coup de main pour cet exo ça serait juste génial :") donc voilà l'énoncé avec mes réponses : On considère la fonction f définie sur [−4 ;−2[∪]−2; 4 ] par f (x)= x^2 +3x+3+2. 1. Donner l'ensemble de dérivabilité de f et calculer f '(x). f est une fonction rationnelle, donc dérivable sur son ensemble de définition. u(x) = x^2 + 3x + 3 v(x) = x+2 u et v sont dérivables sur (ensemble de définition de l'énoncé), donc u/v est dérivable sur (ce même ensemble de définition). x+2 ≠ 0 et u'(x)= 2x+3 donc (u/v)' = u'v - uv'/ v^ <=> x ≠ -2 v'(x)= 1 = (j'ai appliqué la formule et ça m'a donné ce résultat) = x^2+4x+3 ( résultat de f'(x) ) 2. Étudier le signe de f '(x) et en déduire les variations de f . (x+2)^2 > 0 pour tout x ∈ I et f'(x) est du signe de x^2+4x+3, donc positif. Pour déterminer le signe d'un trinôme du second degré, on calcule delta : on a Δ= b^2 - 4ac = 4^2 - 4*1*3 = 16-12 = 4 > 0, donc 2 racines; X1= -3 et X2= -1 f'(x) > 0 pour tout x appartient [ -4; -3] ou [1; 4] don f est strictement croissante sur ce même intervalle. f'(x) < 0 pour tout x appartient [ -3; -2] ou [-2; -1] don f est strictement décroissante sur ce même intervalle. 3. Dresser le tableau de variation de f . (je l'ai fait et je le trouve assez bizarre car ça ne correspond pas vraiment à la fonction tapée dans la calculatrice, et je ne sais pas faire un tableau sur ordinateur) et enfin, la question à laquelle je n'arrive pas du tout... 4. On considère le point A de la courbe de f d'abscisse a et le point B de la courbe de f d'abscisse b. A quelle(s) condition(s), les tangentes à la courbe de f en A et B sont-elles parallèles? merci d'avance à mon/ma sauveur/se !
Responda

Helpful Social

Copyright © 2025 ELIBRARY.TIPS - All rights reserved.