January 2021 0 105 Report
Bonsoir, je dois avoir fait ce devoir pour ce soir maximum sauf que je galère à trouver quelque chose et que j'ai reçu une réponse déjà mais qui n'était pas assez pertinente, pourriez-vous m'aider dans la démarche ? je vous en serais très reconnaissante :) voici mon problème : Un éleveur veut réaliser un pacage rectangulaire de 800m^2 pour ses animaux le long de sa bergerie. Déterminer les dimensions du pacage pour que la clôture ait une longueur minimale.

et voici ce que j'ai trouvé comme infos (je sais pas si ça va être utile) :
aire = 800m^2
largeur = x et longueur = y
aire d'un rectangle = longueur* largeur
y*x = 800 équivaut à y = 800/x

voilà, merci d'avance
Please enter comments
Please enter your name.
Please enter the correct email address.
You must agree before submitting.
More Questions From This User See All
Bonjour tout le monde, j'aurais vraiment besoin de votre aide sur le dernier exercice de mon dm, car il est en partie fait mais les réponses ne coïncident pas, elles m'ont l'air fausses et je ne trouve rien d'autre... je n'arrive pas à répondre à la dernière question aussi, et un coup de main pour cet exo ça serait juste génial :") donc voilà l'énoncé avec mes réponses : On considère la fonction f définie sur [−4 ;−2[∪]−2; 4 ] par f (x)= x^2 +3x+3+2. 1. Donner l'ensemble de dérivabilité de f et calculer f '(x). f est une fonction rationnelle, donc dérivable sur son ensemble de définition. u(x) = x^2 + 3x + 3 v(x) = x+2 u et v sont dérivables sur (ensemble de définition de l'énoncé), donc u/v est dérivable sur (ce même ensemble de définition). x+2 ≠ 0 et u'(x)= 2x+3 donc (u/v)' = u'v - uv'/ v^ <=> x ≠ -2 v'(x)= 1 = (j'ai appliqué la formule et ça m'a donné ce résultat) = x^2+4x+3 ( résultat de f'(x) ) 2. Étudier le signe de f '(x) et en déduire les variations de f . (x+2)^2 > 0 pour tout x ∈ I et f'(x) est du signe de x^2+4x+3, donc positif. Pour déterminer le signe d'un trinôme du second degré, on calcule delta : on a Δ= b^2 - 4ac = 4^2 - 4*1*3 = 16-12 = 4 > 0, donc 2 racines; X1= -3 et X2= -1 f'(x) > 0 pour tout x appartient [ -4; -3] ou [1; 4] don f est strictement croissante sur ce même intervalle. f'(x) < 0 pour tout x appartient [ -3; -2] ou [-2; -1] don f est strictement décroissante sur ce même intervalle. 3. Dresser le tableau de variation de f . (je l'ai fait et je le trouve assez bizarre car ça ne correspond pas vraiment à la fonction tapée dans la calculatrice, et je ne sais pas faire un tableau sur ordinateur) et enfin, la question à laquelle je n'arrive pas du tout... 4. On considère le point A de la courbe de f d'abscisse a et le point B de la courbe de f d'abscisse b. A quelle(s) condition(s), les tangentes à la courbe de f en A et B sont-elles parallèles? merci d'avance à mon/ma sauveur/se !
Responda

Helpful Social

Copyright © 2025 ELIBRARY.TIPS - All rights reserved.