Articles
Register
Sign In
Search
Bernardditbidou
@Bernardditbidou
April 2019
1
146
Report
Soit ω=e∧i2π/5
Monter que z∧5-1=(z-1)(1+z+z²+z³+z∧4)
en déduire que ω est solution de l'équation 1+z+z²+z³+z∧4=0
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
Commentaires
soit ω=e∧i2π/5
on a :
(z-1)(1+z+z²+z³+z∧4)
z+z²+z³+z^4+z^5-1-z-z²-z³-z^4
=z^5-1
en déduire que ω est solution de l'équation 1+z+z²+z³+z∧4=0
on obtient
z^5-1=0
z^5=1
z^5=exp(2i
π)
z=exp(2i
kπ/5) où k=0 ou 1 ou 2 ou 3 ou 4
S={1;
ω;
ω²;
ω³;
ω^4}
on appelle ces solutions les "racines 5èms de l'unité
0 votes
Thanks 1
More Questions From This User
See All
bernardditbidou
June 2021 | 0 Respostas
Responda
bernardditbidou
June 2021 | 0 Respostas
Responda
Bernardditbidou
April 2019 | 0 Respostas
Responda
Bernardditbidou
April 2019 | 0 Respostas
Responda
Bernardditbidou
April 2019 | 0 Respostas
Responda
×
Report "Soit ω=e∧i2π/5Monter que z∧5-1=(z-1)(1+z+z²+z³+z∧4)en déduire que ω est solution de l'équation 1+z+z.... Pergunta de ideia de Bernardditbidou"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
on a :
(z-1)(1+z+z²+z³+z∧4)
z+z²+z³+z^4+z^5-1-z-z²-z³-z^4
=z^5-1
en déduire que ω est solution de l'équation 1+z+z²+z³+z∧4=0
on obtient
z^5-1=0
z^5=1
z^5=exp(2iπ)
z=exp(2ikπ/5) où k=0 ou 1 ou 2 ou 3 ou 4
S={1;ω;ω²;ω³;ω^4}
on appelle ces solutions les "racines 5èms de l'unité