Articles
Register
Sign In
Search
Zorro146
@Zorro146
May 2019
2
51
Report
Bjr quelqu'un peut m'aider svp ?
Soit A = (2x+5)² - (2x+5)(x+6)
1) Développer et réduire A
2) Factoriser A
3) Résoudre A = 0
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
PAU64
Verified answer
1) A = (2x + 5)² - (2x + 5) (x + 6)
A = (2x)² + 2 * 2x * 5 + 5² - (2x * x + 2x * 6 + 5 * x + 5 * 6)
A = 4x² + 20x + 25 - (2x² + 12x + 5x + 30)
A = 4x² + 20x + 25 - 2x² - 12x - 5x - 30
A = 2x² + 3x - 5
2) A =
(2x + 5)
² -
(2x + 5)
(x + 6)
A = (2x + 5) [(2x + 5) - (x + 6)]
A = (2x + 5) (2x + 5 - x - 6)
A = (2x + 5) (x - 1)
3) (2x + 5) (x - 1) = 0
D'après la règle du produit nul :
2x + 5 = 0 ou x - 1 = 0
2x = - 5
x = 1
x = - 5/2
x = - 2,5
L'équation a donc deux solutions : S = {- 2,5 ; 1}.
2 votes
Thanks 1
zorro146
Wow génial merci bcp !!! ;)
PAU64
de rien ;)
nadiab
Verified answer
1) Développer et réduire
A = (2x + 5)² - (2x + 5) (x + 6)
A = (2x+5)(2x+5) - (2x + 5) (x + 6)
A = 4x² + 10x +10x+25 - (2x² + 5x +12x + 30)
A = 4x² + 20x + 25 - 2x² - 5x - 12x - 30
A = 2x² + 3x - 5
2) Factoriser A
A =
(2x + 5)
² -
(2x + 5)
(x + 6)
A = (2x+5)(2x+5) -
(2x + 5) (x + 6)
A = (2x + 5) [(2x + 5) - (x + 6)]
A = (2x + 5) (2x + 5 - x - 6)
A = (2x + 5) (x - 1)
3) Résoudre A
(2x + 5) (x - 1) = 0
2x + 5 = 0 ou x - 1 = 0
2x = - 5
x = 1
x = - 5/2
S= { -5/2 ; 1 }
1 votes
Thanks 1
More Questions From This User
See All
zorro146
February 2021 | 0 Respostas
Responda
zorro146
February 2021 | 0 Respostas
Responda
zorro146
February 2021 | 0 Respostas
Responda
zorro146
January 2021 | 0 Respostas
Responda
Zorro146
May 2019 | 0 Respostas
Responda
Zorro146
May 2019 | 0 Respostas
Responda
Zorro146
May 2019 | 0 Respostas
Responda
×
Report "Bjr quelqu'un peut m'aider svp ? Soit A = (2x+5)² - (2x+5)(x+6) 1) Développer et réduire A 2) Facto.... Pergunta de ideia de Zorro146"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
1) A = (2x + 5)² - (2x + 5) (x + 6)A = (2x)² + 2 * 2x * 5 + 5² - (2x * x + 2x * 6 + 5 * x + 5 * 6)
A = 4x² + 20x + 25 - (2x² + 12x + 5x + 30)
A = 4x² + 20x + 25 - 2x² - 12x - 5x - 30
A = 2x² + 3x - 5
2) A = (2x + 5)² - (2x + 5) (x + 6)
A = (2x + 5) [(2x + 5) - (x + 6)]
A = (2x + 5) (2x + 5 - x - 6)
A = (2x + 5) (x - 1)
3) (2x + 5) (x - 1) = 0
D'après la règle du produit nul :
2x + 5 = 0 ou x - 1 = 0
2x = - 5 x = 1
x = - 5/2
x = - 2,5
L'équation a donc deux solutions : S = {- 2,5 ; 1}.
Verified answer
1) Développer et réduireA = (2x + 5)² - (2x + 5) (x + 6)
A = (2x+5)(2x+5) - (2x + 5) (x + 6)
A = 4x² + 10x +10x+25 - (2x² + 5x +12x + 30)
A = 4x² + 20x + 25 - 2x² - 5x - 12x - 30
A = 2x² + 3x - 5
2) Factoriser A
A = (2x + 5)² - (2x + 5) (x + 6)
A = (2x+5)(2x+5) - (2x + 5) (x + 6)
A = (2x + 5) [(2x + 5) - (x + 6)]
A = (2x + 5) (2x + 5 - x - 6)
A = (2x + 5) (x - 1)
3) Résoudre A
(2x + 5) (x - 1) = 0
2x + 5 = 0 ou x - 1 = 0
2x = - 5 x = 1
x = - 5/2 S= { -5/2 ; 1 }