Articles
Register
Sign In
Search
mouradlapostemourad
@mouradlapostemourad
January 2021
2
61
Report
Bonjour besoin d'aide pour ce devoir:
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
danielwenin
Verified answer
Bonjour,
La réponse en fichier joint
0 votes
Thanks 1
aymanemaysae
Bonjour ;
1) Soit R la fonction qui représente les recettes , donc on a : R(x) = 1000x .
Et comme on a : B(x) = R(x) - C(x) ,
donc on a : B(x) = 1000x - x^3 + 90x² - 2500x -2000
= -x^3 + 90x² - 1500x - 2000 .
2) veuillez tout d'abord voir le fichier ci-joint .
a) On a pour x = 50 : B(x) = 23000€ (c'est le bénéfice maximal) .
b) On a aussi pour x = 24 : B(x) = 16€ (c'est le bénéfice positif minimal) .
1 votes
Thanks 0
mouradlapostemourad
merci pour la piéce jointe ca ma beaucoup d'aider
aymanemaysae
De rien .
More Questions From This User
See All
mouradlapostemourad
January 2021 | 0 Respostas
Responda
mouradlapostemourad
January 2021 | 0 Respostas
Responda
Mouradlapostemourad
May 2019 | 0 Respostas
Responda
Mouradlapostemourad
May 2019 | 0 Respostas
Responda
Mouradlapostemourad
May 2019 | 0 Respostas
Responda
Mouradlapostemourad
May 2019 | 0 Respostas
Responda
×
Report "Bonjour besoin d'aide pour ce devoir:.... Pergunta de ideia de mouradlapostemourad"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Bonjour,La réponse en fichier joint
1) Soit R la fonction qui représente les recettes , donc on a : R(x) = 1000x .
Et comme on a : B(x) = R(x) - C(x) ,
donc on a : B(x) = 1000x - x^3 + 90x² - 2500x -2000
= -x^3 + 90x² - 1500x - 2000 .
2) veuillez tout d'abord voir le fichier ci-joint .
a) On a pour x = 50 : B(x) = 23000€ (c'est le bénéfice maximal) .
b) On a aussi pour x = 24 : B(x) = 16€ (c'est le bénéfice positif minimal) .