Bonjour, j'aurais besoin d'aide please
Partie A : La fonction inverse :
Soit la fonction f définie par f (x) = 1

1) Quel est l’ensemble de définition de la fonction f ?
2) a) On considère deux réels u et v. Démontrer que f(u) – f(v) = −

b) En considérant u ≤ v dans l’intervalle] - ∞ ; 0[, déterminer le signe de f(u) – f(v) .
En déduire que la fonction inverse est décroissante sur cet intervalle.
c) En considérant u ≤ v dans l’intervalle ]0 ; + ∞ [, déterminer le signe de f(u) – f(v) .
En déduire que la fonction inverse est décroissante sur cet intervalle.
d) Dresser le tableau de variation complet de la fonction f .
3) Donner un tableau de valeurs de la fonction f sur l’intervalle [-5 ; 5] avec un pas de 0.5 puis construire
la courbe représentative de la fonction inverse dans un repère orthogonal.
Please enter comments
Please enter your name.
Please enter the correct email address.
You must agree before submitting.
More Questions From This User See All
Bonjour, j'aurais besoin d'aide please Partie A : La fonction inverse : Soit la fonction f définie par f (x) = 1 1) Quel est l’ensemble de définition de la fonction f ? 2) a) On considère deux réels u et v. Démontrer que f(u) – f(v) = − b) En considérant u ≤ v dans l’intervalle] - ∞ ; 0[, déterminer le signe de f(u) – f(v) . En déduire que la fonction inverse est décroissante sur cet intervalle. c) En considérant u ≤ v dans l’intervalle ]0 ; + ∞ [, déterminer le signe de f(u) – f(v) . En déduire que la fonction inverse est décroissante sur cet intervalle. d) Dresser le tableau de variation complet de la fonction f . 3) Donner un tableau de valeurs de la fonction f sur l’intervalle [-5 ; 5] avec un pas de 0.5 puis construire la courbe représentative de la fonction inverse dans un repère orthogonal. Partie B : La fonction racine Soit la fonction f définie par f (x) = √ 1) Quel est l’ensemble de définition de la fonction f ? 2) a) On considère deux réels u et v. Démontrer que √- √ = − √+√ b) En considérant u ≤ v dans l’intervalle [0 ; + ∞ [, déterminer le signe de f(u) – f(v) . En déduire que la fonction racine est croissante sur cet intervalle. c) Dresser le tableau de variation complet de la fonction f . 3) Donner un tableau de valeurs de la fonction f sur l’intervalle [0 ; 10] avec un pas de 0.5 puis construire la courbe représentative de f dans un repère orthogonal.
Responda

Helpful Social

Copyright © 2025 ELIBRARY.TIPS - All rights reserved.