December 2020 0 28 Report
Bonjour, je demande de l'aide car je suis un peu perdu avec toutes mes révisions

voici l'exercice:
On considère les fonctions f1 et f2 défnies sur R par : f1(x)=-x^2+3x+6 et f2(x)=x^2+7x+8. On note C1 et C2 les courbes représentatives respectives de f1 et f2 dans un repère.

1)Montrer qu'il existe un unique point A commun à ces deux courbes
2)Etudier la position relative de ces deux coubes
3)Déterminer une équation de la tangente T1 à la courbe C1 au point A
4)Les deux courbes C1 et C2 admettent-elles la même tangente en A ?
5)Déterminer une équation de la droite (d) qui est à la fois tangente à la courbe C2 et parallèle à la droite Δ d'équation y= -3x+1
6)Soit xM un nombre réel quelconque. On désigne par M le point de la courbe C1 d'abscisse xM.
a)Montrer que l'équation réduite de la tangente T à la courbe C1 au point M est :
y=(-2xM+3)x+xM²+6
b)En déduire le nombre de tangentes à la courbe C1 qui passe aussi par le point I (-2;-3) et donner une équation de chacune de ces tangentes
merci d'avance
Please enter comments
Please enter your name.
Please enter the correct email address.
You must agree before submitting.

Helpful Social

Copyright © 2024 ELIBRARY.TIPS - All rights reserved.