Articles
Register
Sign In
Search
Moussaillon5946
@Moussaillon5946
May 2019
2
61
Report
Bonjour
Pourriez vous m'aider à démontrer
1 + 2 sin x cos x = sin x cos x ( 1 + tg x ) ( 1 + cotg x )
Merci
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
ProfdeMaths1
Verified answer
sin x cos x ( 1 + tg x ) ( 1 + cotg x )
=sin(x).cos(x)(1+sin(x)/cos(x))(1+cos(x)/sin(x))
=(cos(x)+sin(x))(sin(x)+cos(x))
=cos²(x)+sin²(x)+2sin(x).cos(x)
=
1+2.sin(x).cos(x)
0 votes
Thanks 1
danielwenin
Verified answer
La réponse en fichier joint.
bonne journée
0 votes
Thanks 1
More Questions From This User
See All
moussaillon5946
January 2021 | 0 Respostas
Responda
moussaillon5946
January 2021 | 0 Respostas
Responda
Moussaillon5946
May 2019 | 0 Respostas
Responda
Moussaillon5946
May 2019 | 0 Respostas
Responda
Moussaillon5946
May 2019 | 0 Respostas
Responda
Moussaillon5946
May 2019 | 0 Respostas
Bonsoir Simplifier les expressions suivantes : A = 1 + 2 cos a + cos 2a B = 1 + 2 sin a - cos 2a C = ( 1 - cos a + sin a ) / ( 1 + cos a + sin a ) Merci
Responda
Moussaillon5946
May 2019 | 0 Respostas
Responda
Moussaillon5946
May 2019 | 0 Respostas
Responda
Moussaillon5946
May 2019 | 0 Respostas
Responda
Moussaillon5946
May 2019 | 0 Respostas
Responda
×
Report "Bonjour Pourriez vous m'aider à démontrer 1 + 2 sin x cos x = sin x cos x ( 1 + tg x ) ( 1 + cotg x .... Pergunta de ideia de Moussaillon5946"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
sin x cos x ( 1 + tg x ) ( 1 + cotg x )=sin(x).cos(x)(1+sin(x)/cos(x))(1+cos(x)/sin(x))
=(cos(x)+sin(x))(sin(x)+cos(x))
=cos²(x)+sin²(x)+2sin(x).cos(x)
=1+2.sin(x).cos(x)
Verified answer
La réponse en fichier joint.bonne journée