Articles
Register
Sign In
Search
Thamirah17
@Thamirah17
January 2021
1
193
Report
Bonjour tout le monde ! (Terminale S)
quelqu'un pourrait m'aider pour la partie B car je n'y arrive pas s'il vous plaît....
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
scoladan
Verified answer
Bonjour,
Partie B
1) On peut conjecturer que : ∀ x ∈ R, f(x) ≤ g(x)
2)Sur ]-∞;0], d'après la partie A, f(x) ≤ 0. En effet :
x -∞ -√2/2 0 √2/2 +∞
f'(x) - 0 + + 0 -
f(x) décrois. croissante ...
f(0) = 0 et lim f(x) quand x→-∞ = 0
Or g(x) = e¹⁻ˣ ⇒ g(x) > 0 pour tout x réel.
Donc, pour tout x ∈ ]-∞;0], f(x) < g(x)
3) ∀ x ∈ ]0;+∞[, Φ(x) = ln(x) - x² + x
a) f(x) ≤ g(x)
⇔ xe^(1 - x²) ≤ e¹⁻ˣ
⇒ ln[xe^(1 - x²)] ≤ ln[e¹⁻ˣ]
⇔ ln(x) + ln[e^(1 - x²)] ≤ ln[e¹⁻ˣ]
⇔ ln(x) + (1 - x²) ≤ 1 - x
⇔ ln(x) - x² + x ≤ 0
⇔ Φ(x) ≤ 0
b) On admet que :
. f(x) = g(x) ⇔ Φ(x) = 0
. Φ est dérivable sur ]0;+∞[
Φ'(x) = 1/x - 2x + 1 = (-2x² + x + 1)/x
Signe de (-2x² + x + 1) sur ]0;+∞[ :
Δ = 1² - 4x(-2)x(1) = 9 = 3²
Donc 2 racines : x₁ = (-1 + 3)/(-4) = -1/2 ∉ ]0;+∞[
et x₂ = (-1 - 3)/(-4) = 1
x 0 1 +∞
Φ'(x) + 0 -
Φ(x) croissante 0 décroissante
1 votes
Thanks 1
More Questions From This User
See All
Thamirah17
November 2023 | 0 Respostas
Responda
Thamirah17
October 2023 | 0 Respostas
Responda
Thamirah17
October 2023 | 0 Respostas
Responda
Thamirah17
June 2022 | 0 Respostas
Responda
Thamirah17
April 2022 | 0 Respostas
Responda
Thamirah17
June 2021 | 0 Respostas
Responda
Thamirah17
June 2021 | 0 Respostas
Responda
Thamirah17
June 2021 | 0 Respostas
Responda
Thamirah17
June 2021 | 0 Respostas
Responda
Thamirah17
June 2021 | 0 Respostas
Responda
×
Report "Bonjour tout le monde ! (Terminale S)quelqu'un pourrait m'aider pour la partie B car je n'y arrive p.... Pergunta de ideia de Thamirah17"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Bonjour,Partie B
1) On peut conjecturer que : ∀ x ∈ R, f(x) ≤ g(x)
2)Sur ]-∞;0], d'après la partie A, f(x) ≤ 0. En effet :
x -∞ -√2/2 0 √2/2 +∞
f'(x) - 0 + + 0 -
f(x) décrois. croissante ...
f(0) = 0 et lim f(x) quand x→-∞ = 0
Or g(x) = e¹⁻ˣ ⇒ g(x) > 0 pour tout x réel.
Donc, pour tout x ∈ ]-∞;0], f(x) < g(x)
3) ∀ x ∈ ]0;+∞[, Φ(x) = ln(x) - x² + x
a) f(x) ≤ g(x)
⇔ xe^(1 - x²) ≤ e¹⁻ˣ
⇒ ln[xe^(1 - x²)] ≤ ln[e¹⁻ˣ]
⇔ ln(x) + ln[e^(1 - x²)] ≤ ln[e¹⁻ˣ]
⇔ ln(x) + (1 - x²) ≤ 1 - x
⇔ ln(x) - x² + x ≤ 0
⇔ Φ(x) ≤ 0
b) On admet que :
. f(x) = g(x) ⇔ Φ(x) = 0
. Φ est dérivable sur ]0;+∞[
Φ'(x) = 1/x - 2x + 1 = (-2x² + x + 1)/x
Signe de (-2x² + x + 1) sur ]0;+∞[ :
Δ = 1² - 4x(-2)x(1) = 9 = 3²
Donc 2 racines : x₁ = (-1 + 3)/(-4) = -1/2 ∉ ]0;+∞[
et x₂ = (-1 - 3)/(-4) = 1
x 0 1 +∞
Φ'(x) + 0 -
Φ(x) croissante 0 décroissante