Bonjour,
On a
E(0) = 0³ + 3 × 0² + 3 × 0 + 1 = (0 + 1)³
E(1) = 1³ + 3 × 1² + 3 × 1 + 1 = (1 + 1)³
E(2) = 2³ + 3 × 2² + 3 × 2 + 1 = (2 + 1)³
E(3) = 3³ + 3 × 3² + 3 × 3 + 1 = (3 + 1)³
.
E(n) = n³ + 3 × n² + 3 × n + 1 = (n + 1)³
D'où (1³ + 2³ + 3³ + ... + n³) + 3 × (1² + 2² + 3² + ... + n²) + 3 (1 + 2 + 3 + ... + n) + n + 1 = (1³ + 2³ + 3³ + 4³ + ... + (n + 1)³)
Soit T(n) + 3 D(n) + 3 S(n) + n + 1 = T(n + 1)
On en conclut que T(n + 1) = T(n) + 3 D(n) + 3 S(n) + n + 1
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Bonjour,
On a
E(0) = 0³ + 3 × 0² + 3 × 0 + 1 = (0 + 1)³
E(1) = 1³ + 3 × 1² + 3 × 1 + 1 = (1 + 1)³
E(2) = 2³ + 3 × 2² + 3 × 2 + 1 = (2 + 1)³
E(3) = 3³ + 3 × 3² + 3 × 3 + 1 = (3 + 1)³
.
.
.
E(n) = n³ + 3 × n² + 3 × n + 1 = (n + 1)³
D'où (1³ + 2³ + 3³ + ... + n³) + 3 × (1² + 2² + 3² + ... + n²) + 3 (1 + 2 + 3 + ... + n) + n + 1 = (1³ + 2³ + 3³ + 4³ + ... + (n + 1)³)
Soit T(n) + 3 D(n) + 3 S(n) + n + 1 = T(n + 1)
On en conclut que T(n + 1) = T(n) + 3 D(n) + 3 S(n) + n + 1