Articles
Register
Sign In
Search
Design971
@Design971
May 2019
1
30
Report
Bonjours,
j'ai un devoir maison à rendre pour lundi, et j'aimerais un peux d'aide.
je vous remercie d'avance.
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
scoladan
Verified answer
Bonjour,
1)
a) f(t) = (t-2)/t(t-1)
2 pôles simples 0 et 1
Partie entière = 0 car degré numérateur < degré dénominateur
==> f(t) = A/t + B/(t-1)
tf(t) = A + Bt/(t-1)
==> A = lim tf(t) quand t -->0
==> A = lim t(t-2)/t(t-1) = lim (t-2)/(t-1) = -2/-1 = 2
Et :
(t-1)f(t) = A(t-1)/t + B
==> B = lim (t-1)f(t) quand t-->1
Soit B = lim (t-1)(t-2)/t(t-1) = lim (t-2)/t = -1/1 = -1
==> f(t) = 2/t - 1/(t-1)
b) idem
c) f(t) = t^3/(t^2 - 3t + 2) = t^3/(t-1)(t-2)
2 pôles simples 1 et 2
Division euclidienne :
t^3 = t(t^2 - 3t + 2) + 3t^2 - 2t
= t(t^2 - 3t + 2) + 3(t ^2 - 3t + 2) + 7t - 6
==> f(t) = t + 3 + A/(t-1) + B/(t-2)
A = lim (t-1)f(t) quand t-->1 = lim t^3/(t-2) = -1
B = lim (t-2)f(t) quand t-->2 = lim t^3/(t-1) = 8
==> f(t) = t + 3 - 1/(t-1) + 8/(t-2)
2) f(-x) = - 2x/(x^2 + 1) - Arctan(-x) = -2x/(x^2 +1) + Arctan(x) = - f(x)
==> f impaire ==> Symétrie / O ==> Etude sur [0, +infini[
2) lim f(x) qd x-->+ infini = lim (-Arctan(x)) = - pi/2
3) f'(x) = [2(x^2+1) - 4x^2]/(x^2 + 1)^2 - 1/(x^2 + 1)
= 1/(x^2 + 1)^2 [2x^2 - 4x^2 + 2 - 1 - x^2]
= (1 - 3x^2)/(x^2+1)^2
S'annule sur [0, +infini[ pour x = V(3)/3
4)
5) y = f'(?)(x-?) + f(?) (on voit pas l'abcisse en question)
0 votes
Thanks 0
Design971
je mettrais mieux la photo ce soir.
scoladan
tu vas gaspiller des points ;) il te reste juste à remplacer ? par sa valeur.
Design971
Dacc
More Questions From This User
See All
Design971
June 2021 | 0 Respostas
Responda
Design971
June 2021 | 0 Respostas
Responda
Design971
January 2021 | 0 Respostas
Responda
Design971
January 2021 | 0 Respostas
Responda
Design971
January 2021 | 0 Respostas
Responda
Design971
January 2021 | 0 Respostas
Responda
Design971
January 2021 | 0 Respostas
Responda
Design971
January 2021 | 0 Respostas
Responda
Design971
January 2021 | 0 Respostas
Responda
Design971
January 2021 | 0 Respostas
Responda
×
Report "Bonjours,j'ai un devoir maison à rendre pour lundi, et j'aimerais un peux d'aide. je vous remercie d.... Pergunta de ideia de Design971"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Bonjour,1)
a) f(t) = (t-2)/t(t-1)
2 pôles simples 0 et 1
Partie entière = 0 car degré numérateur < degré dénominateur
==> f(t) = A/t + B/(t-1)
tf(t) = A + Bt/(t-1)
==> A = lim tf(t) quand t -->0
==> A = lim t(t-2)/t(t-1) = lim (t-2)/(t-1) = -2/-1 = 2
Et :
(t-1)f(t) = A(t-1)/t + B
==> B = lim (t-1)f(t) quand t-->1
Soit B = lim (t-1)(t-2)/t(t-1) = lim (t-2)/t = -1/1 = -1
==> f(t) = 2/t - 1/(t-1)
b) idem
c) f(t) = t^3/(t^2 - 3t + 2) = t^3/(t-1)(t-2)
2 pôles simples 1 et 2
Division euclidienne :
t^3 = t(t^2 - 3t + 2) + 3t^2 - 2t
= t(t^2 - 3t + 2) + 3(t ^2 - 3t + 2) + 7t - 6
==> f(t) = t + 3 + A/(t-1) + B/(t-2)
A = lim (t-1)f(t) quand t-->1 = lim t^3/(t-2) = -1
B = lim (t-2)f(t) quand t-->2 = lim t^3/(t-1) = 8
==> f(t) = t + 3 - 1/(t-1) + 8/(t-2)
2) f(-x) = - 2x/(x^2 + 1) - Arctan(-x) = -2x/(x^2 +1) + Arctan(x) = - f(x)
==> f impaire ==> Symétrie / O ==> Etude sur [0, +infini[
2) lim f(x) qd x-->+ infini = lim (-Arctan(x)) = - pi/2
3) f'(x) = [2(x^2+1) - 4x^2]/(x^2 + 1)^2 - 1/(x^2 + 1)
= 1/(x^2 + 1)^2 [2x^2 - 4x^2 + 2 - 1 - x^2]
= (1 - 3x^2)/(x^2+1)^2
S'annule sur [0, +infini[ pour x = V(3)/3
4)
5) y = f'(?)(x-?) + f(?) (on voit pas l'abcisse en question)