[tex]\displaystyle \sf f(x)=\frac{\log(-x^2+1)}{\sqrt{x}} \\\\\\ \text{Logaritmando \'e maior que zero} : \\\\ -x^2+1 > 0 \\\\ x^2 < 1 \\\\\ -1 < x < 1 \\\\\\ \text{Raiz quadrada \'e maior ou igual a zero}\\\\ \sqrt{x} \geq 0 \\\\ \text{Mas como est\'a no denominador n\~ao pode ser zero, ent\~ao} : \\\\ \sqrt{x} > 0 \\\\ x > 0 \\\\ \text{Fazendo a intersecc\~ao dos intervalos} : \\\\\ (-1 < x < 1) \cap x > 0 \\\\\ 0 < x < 1 \\\\ \large\boxed{\sf \ D_f =\ ]\ 0,\ 1\ [ \ }\checkmark[/tex]
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
[tex]\displaystyle \sf f(x)=\frac{\log(-x^2+1)}{\sqrt{x}} \\\\\\ \text{Logaritmando \'e maior que zero} : \\\\ -x^2+1 > 0 \\\\ x^2 < 1 \\\\\ -1 < x < 1 \\\\\\ \text{Raiz quadrada \'e maior ou igual a zero}\\\\ \sqrt{x} \geq 0 \\\\ \text{Mas como est\'a no denominador n\~ao pode ser zero, ent\~ao} : \\\\ \sqrt{x} > 0 \\\\ x > 0 \\\\ \text{Fazendo a intersecc\~ao dos intervalos} : \\\\\ (-1 < x < 1) \cap x > 0 \\\\\ 0 < x < 1 \\\\ \large\boxed{\sf \ D_f =\ ]\ 0,\ 1\ [ \ }\checkmark[/tex]
letra d