Resposta:
Letra A
Explicação passo a passo:
[tex]\displaystyle\int \frac{senx}{\sqrt{2-cosx} }dx=?\\\\2-cosx=u\impliessenxdx\implies senx=du\\\\\displaystyle\int \frac{senx}{\sqrt{2-cosx} }dx=\displaystyle\int \frac{du}{\sqrt{u} } =\displaystyle\int \frac{du}{u^{\frac{1}{2} } }=\displaystyle\int u^{-\frac{1}{2} } du} =u\frac{\frac{1}{2} }{\frac{1}{2} }+c =2\sqrt{u} +c=\\\\\\2\sqrt{2-cosx}+c[/tex]
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Resposta:
Letra A
Explicação passo a passo:
[tex]\displaystyle\int \frac{senx}{\sqrt{2-cosx} }dx=?\\\\2-cosx=u\impliessenxdx\implies senx=du\\\\\displaystyle\int \frac{senx}{\sqrt{2-cosx} }dx=\displaystyle\int \frac{du}{\sqrt{u} } =\displaystyle\int \frac{du}{u^{\frac{1}{2} } }=\displaystyle\int u^{-\frac{1}{2} } du} =u\frac{\frac{1}{2} }{\frac{1}{2} }+c =2\sqrt{u} +c=\\\\\\2\sqrt{2-cosx}+c[/tex]