Resposta:
[tex]\textsf{Leia abaixo}[/tex]
Explicação passo a passo:
[tex]\mathsf{C(-1;1)\:\:\:\:\:\:x + y + 6 = 0}[/tex]
[tex]\mathsf{d_{c,r} = |\:\dfrac{ax_0 + by_0 + c}{\sqrt{a^2 + b^2}}\:|}[/tex]
[tex]\mathsf{d_{c,r} = |\:\dfrac{(1).(-1) + (1).(1) + (-6)}{\sqrt{(1)^2 + (1)^2}}\:|}[/tex]
[tex]\mathsf{d_{c,r} = |\:\dfrac{-1 + 1 - 6}{\sqrt{1 + 1}}\:|}[/tex]
[tex]\mathsf{d_{c,r} = |\:-\dfrac{6}{\sqrt{2}}\:|}[/tex]
[tex]\boxed{\boxed{\mathsf{d_{c,r} = 3\sqrt{2}}}}[/tex]
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Resposta:
[tex]\textsf{Leia abaixo}[/tex]
Explicação passo a passo:
[tex]\mathsf{C(-1;1)\:\:\:\:\:\:x + y + 6 = 0}[/tex]
[tex]\mathsf{d_{c,r} = |\:\dfrac{ax_0 + by_0 + c}{\sqrt{a^2 + b^2}}\:|}[/tex]
[tex]\mathsf{d_{c,r} = |\:\dfrac{(1).(-1) + (1).(1) + (-6)}{\sqrt{(1)^2 + (1)^2}}\:|}[/tex]
[tex]\mathsf{d_{c,r} = |\:\dfrac{-1 + 1 - 6}{\sqrt{1 + 1}}\:|}[/tex]
[tex]\mathsf{d_{c,r} = |\:-\dfrac{6}{\sqrt{2}}\:|}[/tex]
[tex]\boxed{\boxed{\mathsf{d_{c,r} = 3\sqrt{2}}}}[/tex]