Aplicado a Regra de Cramer, encontramos que os conjuntos soluções dos sistemas são:
A Regra de Cramer é uma técnica utilizada para resolver sistemas de equações.
Para resolver sistemas 2x2 aplicando esta regra, devemos seguir 4 passos:
[tex]\boxed{\large\displaystyle\text{$\mathsf{x=\dfrac{Dx}{D},~y=\dfrac{Dy}{D}}$}}[/tex]
Para entender como funciona a Regra de Cramer, observe a resolução do seguinte sistema de equações:
[tex]\large\displaystyle\text{$\mathsf{\left\{\begin{matrix}3x+y=3\\3x+4y=30\end{matrix}\right.}$}[/tex]
A matriz formada pelos coeficientes do sistema será igual a:
[tex]\large\displaystyle\text{$\mathsf{\begin{bmatrix}3 & 1\\ 3 & 4\end{bmatrix}}$}[/tex]
Agora, devemos seguir os 4 passos.
[tex]\large\displaystyle\text{$\mathsf{\begin{bmatrix}3 & 1\\ 3 & 4\end{bmatrix}}$}\\\\\\\large\displaystyle\text{$\mathsf{D = 3~.~4-1~.~3}$}\\\large\displaystyle\text{$\mathsf{D=12-3}$}\\\boxed{\large\displaystyle\text{$\mathsf{D=9}$}}[/tex]
Substitua a primeira coluna pelos termos independentes (3 e 30).
[tex]\large\displaystyle\text{$\mathsf{\begin{bmatrix}\red{3} & 1\\ \red{3} & 4\end{bmatrix}\rightarrow \begin{bmatrix}\red{3} & 1\\ \red{30} & 4\end{bmatrix}}$}[/tex]
Calcule o determinante Dx.
[tex]\large\displaystyle\text{$\mathsf{\begin{bmatrix}3 & 1\\ 30 & 4\end{bmatrix}}$}\\\\\\\large\displaystyle\text{$\mathsf{Dx=3~.~4-1~.~30}$}\\\large\displaystyle\text{$\mathsf{Dx=12-30I}$}\\\boxed{\large\displaystyle\text{$\mathsf{Dx=-18}$}}[/tex]
Substitua a segunda coluna pelos termos independentes (5 e 9).
[tex]\large\displaystyle\text{$\mathsf{\begin{bmatrix} 3& \red{1}\\3 & \red{4}\end{bmatrix}\rightarrow \begin{bmatrix}3 & \red{3}\\3 & \red{30}\end{bmatrix}}$}[/tex]
Calcule o determinante Dy.
[tex]\large\displaystyle\text{$\mathsf{\begin{bmatrix}3 & 3\\ 3 & 30\end{bmatrix}}$}\\\\\\\large\displaystyle\text{$\mathsf{Dy=3~.~30-3~.~3}$}\\\large\displaystyle\text{$\mathsf{Dy=90-9}$}\\\boxed{\large\displaystyle\text{$\mathsf{Dy=81}$}}[/tex]
[tex]\large\displaystyle\text{$\mathsf{x=\dfrac{Dx}{D},~y=\dfrac{Dy}{D}}$}\\\\\\\large\displaystyle\text{$\mathsf{x=\dfrac{-18}{9},~y=\dfrac{81}{9}}$}\\\\\\\boxed{\large\displaystyle\text{$\mathsf{x=-2,~y=9}$}}[/tex]
Veja que encontramos o conjunto solução do sistema: S = (-2, 9).
Devemos aplicar a Regra de Cramer nos itens A e B.
Passo 1: calcular o determinante D.
[tex]\large\displaystyle\text{$\mathsf{\begin{bmatrix} 1 & 1\\ 3 & 2 \end{bmatrix}}$}\\\\\\\large\displaystyle\text{$\mathsf{D=1~.~2-1~.~3}$}\\\large\displaystyle\text{$\mathsf{D=2-3}$}\\\boxed{\large\displaystyle\text{$\mathsf{D=-1}$}}[/tex]
Passo 2: calcular o determinante Dx.
[tex]\large\displaystyle\text{$\mathsf{\begin{bmatrix} \red{1} & 1\\ \red{3} & 2 \end{bmatrix} \rightarrow \begin{bmatrix} \red{2} & 1\\ \red{3} & 2 \end{bmatrix}}$}\\\\\\\large\displaystyle\text{$\mathsf{Dx=2~.~2-3~.~1}$}\\\large\displaystyle\text{$\mathsf{Dx=4-3}$}\\\boxed{\large\displaystyle\text{$\mathsf{Dx=1}$}}[/tex]
Passo 3: calcular o determinante Dy.
[tex]\large\displaystyle\text{$\mathsf{\begin{bmatrix} 1 & \red{1}\\ 3 & \red{2} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \red{2}\\ 3 & \red{3}\end{bmatrix}}$}\\\\\\\large\displaystyle\text{$\mathsf{Dy=1~.~3-2~.~3}$}\\\large\displaystyle\text{$\mathsf{Dy=3-6}$}\\\boxed{\large\displaystyle\text{$\mathsf{Dy=-3}$}}[/tex]
Passo 4: obtenha os valores de x e y.
[tex]\large\displaystyle\text{$\mathsf{x=\dfrac{Dx}{D},~y=\dfrac{Dy}{D}}$}\\\\\\\large\displaystyle\text{$\mathsf{x=\dfrac{1}{-1},~y=\dfrac{-3}{-1}}$}\\\\\\\boxed{\large\displaystyle\text{$\mathsf{x=-1,~y=3}$}}[/tex]
Portanto, o conjunto solução do sistema é:
[tex]\boxed{\boxed{\large\displaystyle\text{$\mathsf{S=(-1,3)}$}}}[/tex]
[tex]\large\displaystyle\text{$\mathsf{\begin{bmatrix} 1 & 1\\ 2 & -1 \end{bmatrix}}$}\\\\\\\large\displaystyle\text{$\mathsf{D=1~.~(-1)-1~.~2}$}\\\large\displaystyle\text{$\mathsf{D=-1-2}$}\\\boxed{\large\displaystyle\text{$\mathsf{D=-3}$}}[/tex]
[tex]\large\displaystyle\text{$\mathsf{\begin{bmatrix} \red{1} & 1\\ \red{2} & -1 \end{bmatrix} \rightarrow \begin{bmatrix} \red{7} & 1\\ \red{2} & -1 \end{bmatrix}}$}\\\\\\\large\displaystyle\text{$\mathsf{Dx=7~.~(-1)-1~.~2}$}\\\large\displaystyle\text{$\mathsf{Dx=-7-2}$}\\\boxed{\large\displaystyle\text{$\mathsf{Dx=-9}$}}[/tex]
[tex]\large\displaystyle\text{$\mathsf{\begin{bmatrix} 1 & \red{1}\\ 2 & \red{-1} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \red{7}\\ 2 & \red{2}\end{bmatrix}}$}\\\\\\\large\displaystyle\text{$\mathsf{Dy=1~.~2-7~.~2}$}\\\large\displaystyle\text{$\mathsf{Dy=2-14}$}\\\boxed{\large\displaystyle\text{$\mathsf{Dy=-12}$}}[/tex]
[tex]\large\displaystyle\text{$\mathsf{x=\dfrac{Dx}{D},~y=\dfrac{Dy}{D}}$}\\\\\\\large\displaystyle\text{$\mathsf{x=\dfrac{-9}{-3},~y=\dfrac{-12}{-3}}$}\\\\\\\boxed{\large\displaystyle\text{$\mathsf{x=3,~y=4}$}}[/tex]
[tex]\boxed{\boxed{\large\displaystyle\text{$\mathsf{S=(3,4)}$}}}[/tex]
⭐ Espero ter ajudado! ⭐
Veja mais sobre a Regra de Cramer em:
https://brainly.com.br/tarefa/20558212
https://brainly.com.br/tarefa/40375669
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Aplicado a Regra de Cramer, encontramos que os conjuntos soluções dos sistemas são:
Regra de Cramer
A Regra de Cramer é uma técnica utilizada para resolver sistemas de equações.
Para resolver sistemas 2x2 aplicando esta regra, devemos seguir 4 passos:
[tex]\boxed{\large\displaystyle\text{$\mathsf{x=\dfrac{Dx}{D},~y=\dfrac{Dy}{D}}$}}[/tex]
Para entender como funciona a Regra de Cramer, observe a resolução do seguinte sistema de equações:
[tex]\large\displaystyle\text{$\mathsf{\left\{\begin{matrix}3x+y=3\\3x+4y=30\end{matrix}\right.}$}[/tex]
A matriz formada pelos coeficientes do sistema será igual a:
[tex]\large\displaystyle\text{$\mathsf{\begin{bmatrix}3 & 1\\ 3 & 4\end{bmatrix}}$}[/tex]
Agora, devemos seguir os 4 passos.
Passo 1: calcular o determinante D
[tex]\large\displaystyle\text{$\mathsf{\begin{bmatrix}3 & 1\\ 3 & 4\end{bmatrix}}$}\\\\\\\large\displaystyle\text{$\mathsf{D = 3~.~4-1~.~3}$}\\\large\displaystyle\text{$\mathsf{D=12-3}$}\\\boxed{\large\displaystyle\text{$\mathsf{D=9}$}}[/tex]
Passo 2: calcular o determinante Dx
Substitua a primeira coluna pelos termos independentes (3 e 30).
[tex]\large\displaystyle\text{$\mathsf{\begin{bmatrix}\red{3} & 1\\ \red{3} & 4\end{bmatrix}\rightarrow \begin{bmatrix}\red{3} & 1\\ \red{30} & 4\end{bmatrix}}$}[/tex]
Calcule o determinante Dx.
[tex]\large\displaystyle\text{$\mathsf{\begin{bmatrix}3 & 1\\ 30 & 4\end{bmatrix}}$}\\\\\\\large\displaystyle\text{$\mathsf{Dx=3~.~4-1~.~30}$}\\\large\displaystyle\text{$\mathsf{Dx=12-30I}$}\\\boxed{\large\displaystyle\text{$\mathsf{Dx=-18}$}}[/tex]
Passo 3: calcular o determinante Dy
Substitua a segunda coluna pelos termos independentes (5 e 9).
[tex]\large\displaystyle\text{$\mathsf{\begin{bmatrix} 3& \red{1}\\3 & \red{4}\end{bmatrix}\rightarrow \begin{bmatrix}3 & \red{3}\\3 & \red{30}\end{bmatrix}}$}[/tex]
Calcule o determinante Dy.
[tex]\large\displaystyle\text{$\mathsf{\begin{bmatrix}3 & 3\\ 3 & 30\end{bmatrix}}$}\\\\\\\large\displaystyle\text{$\mathsf{Dy=3~.~30-3~.~3}$}\\\large\displaystyle\text{$\mathsf{Dy=90-9}$}\\\boxed{\large\displaystyle\text{$\mathsf{Dy=81}$}}[/tex]
Passo 4: Obter os valores de x e y
[tex]\large\displaystyle\text{$\mathsf{x=\dfrac{Dx}{D},~y=\dfrac{Dy}{D}}$}\\\\\\\large\displaystyle\text{$\mathsf{x=\dfrac{-18}{9},~y=\dfrac{81}{9}}$}\\\\\\\boxed{\large\displaystyle\text{$\mathsf{x=-2,~y=9}$}}[/tex]
Veja que encontramos o conjunto solução do sistema: S = (-2, 9).
Resolução dos exercícios
Devemos aplicar a Regra de Cramer nos itens A e B.
Item A
Passo 1: calcular o determinante D.
[tex]\large\displaystyle\text{$\mathsf{\begin{bmatrix} 1 & 1\\ 3 & 2 \end{bmatrix}}$}\\\\\\\large\displaystyle\text{$\mathsf{D=1~.~2-1~.~3}$}\\\large\displaystyle\text{$\mathsf{D=2-3}$}\\\boxed{\large\displaystyle\text{$\mathsf{D=-1}$}}[/tex]
Passo 2: calcular o determinante Dx.
[tex]\large\displaystyle\text{$\mathsf{\begin{bmatrix} \red{1} & 1\\ \red{3} & 2 \end{bmatrix} \rightarrow \begin{bmatrix} \red{2} & 1\\ \red{3} & 2 \end{bmatrix}}$}\\\\\\\large\displaystyle\text{$\mathsf{Dx=2~.~2-3~.~1}$}\\\large\displaystyle\text{$\mathsf{Dx=4-3}$}\\\boxed{\large\displaystyle\text{$\mathsf{Dx=1}$}}[/tex]
Passo 3: calcular o determinante Dy.
[tex]\large\displaystyle\text{$\mathsf{\begin{bmatrix} 1 & \red{1}\\ 3 & \red{2} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \red{2}\\ 3 & \red{3}\end{bmatrix}}$}\\\\\\\large\displaystyle\text{$\mathsf{Dy=1~.~3-2~.~3}$}\\\large\displaystyle\text{$\mathsf{Dy=3-6}$}\\\boxed{\large\displaystyle\text{$\mathsf{Dy=-3}$}}[/tex]
Passo 4: obtenha os valores de x e y.
[tex]\large\displaystyle\text{$\mathsf{x=\dfrac{Dx}{D},~y=\dfrac{Dy}{D}}$}\\\\\\\large\displaystyle\text{$\mathsf{x=\dfrac{1}{-1},~y=\dfrac{-3}{-1}}$}\\\\\\\boxed{\large\displaystyle\text{$\mathsf{x=-1,~y=3}$}}[/tex]
Portanto, o conjunto solução do sistema é:
[tex]\boxed{\boxed{\large\displaystyle\text{$\mathsf{S=(-1,3)}$}}}[/tex]
Item B
Passo 1: calcular o determinante D.
[tex]\large\displaystyle\text{$\mathsf{\begin{bmatrix} 1 & 1\\ 2 & -1 \end{bmatrix}}$}\\\\\\\large\displaystyle\text{$\mathsf{D=1~.~(-1)-1~.~2}$}\\\large\displaystyle\text{$\mathsf{D=-1-2}$}\\\boxed{\large\displaystyle\text{$\mathsf{D=-3}$}}[/tex]
Passo 2: calcular o determinante Dx.
[tex]\large\displaystyle\text{$\mathsf{\begin{bmatrix} \red{1} & 1\\ \red{2} & -1 \end{bmatrix} \rightarrow \begin{bmatrix} \red{7} & 1\\ \red{2} & -1 \end{bmatrix}}$}\\\\\\\large\displaystyle\text{$\mathsf{Dx=7~.~(-1)-1~.~2}$}\\\large\displaystyle\text{$\mathsf{Dx=-7-2}$}\\\boxed{\large\displaystyle\text{$\mathsf{Dx=-9}$}}[/tex]
Passo 3: calcular o determinante Dy.
[tex]\large\displaystyle\text{$\mathsf{\begin{bmatrix} 1 & \red{1}\\ 2 & \red{-1} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \red{7}\\ 2 & \red{2}\end{bmatrix}}$}\\\\\\\large\displaystyle\text{$\mathsf{Dy=1~.~2-7~.~2}$}\\\large\displaystyle\text{$\mathsf{Dy=2-14}$}\\\boxed{\large\displaystyle\text{$\mathsf{Dy=-12}$}}[/tex]
Passo 4: obtenha os valores de x e y.
[tex]\large\displaystyle\text{$\mathsf{x=\dfrac{Dx}{D},~y=\dfrac{Dy}{D}}$}\\\\\\\large\displaystyle\text{$\mathsf{x=\dfrac{-9}{-3},~y=\dfrac{-12}{-3}}$}\\\\\\\boxed{\large\displaystyle\text{$\mathsf{x=3,~y=4}$}}[/tex]
Portanto, o conjunto solução do sistema é:
[tex]\boxed{\boxed{\large\displaystyle\text{$\mathsf{S=(3,4)}$}}}[/tex]
⭐ Espero ter ajudado! ⭐
Veja mais sobre a Regra de Cramer em:
https://brainly.com.br/tarefa/20558212
https://brainly.com.br/tarefa/40375669