Resposta:
[tex]\textsf{Leia abaixo}[/tex]
Explicação passo a passo:
[tex]\sf 5\:.\:log\left(\dfrac{x}{8}\right) + 2\:.\:log\left(\dfrac{x}{5}\right) = 4\:.\:log\:x - log\:25[/tex]
[tex]\sf log\left(\dfrac{x}{8}\right)^5 + log\left(\dfrac{x}{5}\right)^2 = log\:x^4 - log\:25[/tex]
[tex]\sf log\left(\dfrac{x^5\:.\:x^2}{8^5\:.\:5^2}\right) = log\left(\dfrac{x^4}{25}\right)[/tex]
[tex]\sf \left(\dfrac{x^5\:.\:x^2}{8^5\:.\:5^2}\right) = \left(\dfrac{x^4}{25}\right)[/tex]
[tex]\sf \dfrac{x^3}{8^5} = 1[/tex]
[tex]\sf x = \sqrt[\sf 3]{\sf 8^3\:.\:4^3}[/tex]
[tex]\boxed{\boxed{\sf x = 32}}[/tex]
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Resposta:
[tex]\textsf{Leia abaixo}[/tex]
Explicação passo a passo:
[tex]\sf 5\:.\:log\left(\dfrac{x}{8}\right) + 2\:.\:log\left(\dfrac{x}{5}\right) = 4\:.\:log\:x - log\:25[/tex]
[tex]\sf log\left(\dfrac{x}{8}\right)^5 + log\left(\dfrac{x}{5}\right)^2 = log\:x^4 - log\:25[/tex]
[tex]\sf log\left(\dfrac{x^5\:.\:x^2}{8^5\:.\:5^2}\right) = log\left(\dfrac{x^4}{25}\right)[/tex]
[tex]\sf \left(\dfrac{x^5\:.\:x^2}{8^5\:.\:5^2}\right) = \left(\dfrac{x^4}{25}\right)[/tex]
[tex]\sf \dfrac{x^3}{8^5} = 1[/tex]
[tex]\sf x = \sqrt[\sf 3]{\sf 8^3\:.\:4^3}[/tex]
[tex]\boxed{\boxed{\sf x = 32}}[/tex]