Resposta:
f(x) = 7x³
f'(x) = lim [ 7(x + h)³ - 7x³]/h
h → 0
f'(x) = lim [ 7(x³ + 3.x².h + 3.x.h² + h³) - 7x³]/h
f'(x) = lim [ 7x³ + 21x²h + 21xh² + 7h³ - 7x³]/h
f'(x) = lim [ 21x²h + 21xh² + h³]/h
f'(x) = lim [ h.(21x² + 21xh + h²)]/h
f'(x) = lim [21x² + 21x.0 + 0²]
f'(x) = 21x²
Explicação passo a passo:
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Resposta:
f(x) = 7x³
f'(x) = lim [ 7(x + h)³ - 7x³]/h
h → 0
f'(x) = lim [ 7(x³ + 3.x².h + 3.x.h² + h³) - 7x³]/h
h → 0
f'(x) = lim [ 7x³ + 21x²h + 21xh² + 7h³ - 7x³]/h
h → 0
f'(x) = lim [ 21x²h + 21xh² + h³]/h
h → 0
f'(x) = lim [ h.(21x² + 21xh + h²)]/h
h → 0
f'(x) = lim [21x² + 21x.0 + 0²]
h → 0
f'(x) = 21x²
Explicação passo a passo: