J'ai besoin d'aide pour cet exercice que j'ai à faire en DM de spécialité Mathématiques de Terminale. L'exercice est disponible sur le manuel "Lelivrescolaire.fr" 90p231
Dans un plan muni d’un repère orthonormé (O; i , j​ ), on considère le cercle Γ de centre O et de rayon 1. On place les points A et A′ de coordonnées respectives (1;0) et (−1;0). H est un point du segment [AA′ ] distinct de A et A′ . On note x l’abscisse du point H. Δ est la droite perpendiculaire à (AA′ ) passant par H. Δ coupe le cercle Γ en deux points M et M′ .
1. Faire une figure.
2. Exprimer en fonction de x l’aire du triangle AMM′
3. Soit f la fonction définie sur ]−1;1[ par : [tex]f(x)=(1-x) \sqrt{1-x^2}[/tex]
a. Étudier les variations de la fonction f sur ]−1;1[.
b. En déduire l’abscisse du point H pour que l’aire soit maximale.
c. Prouver que, dans ce cas, le triangle AMM′ est équilatéral.
Please enter comments
Please enter your name.
Please enter the correct email address.
You must agree before submitting.

Lista de comentários


Helpful Social

Copyright © 2024 ELIBRARY.TIPS - All rights reserved.