================================================================
Para estabelecermos uma relação entre duas escalas termométricas precisamos obter uma proporcionalidade entre elas, tipo uma regra de três.
No nosso caso
a) Comparando as escalas X com a escala Celsius
80 °A -----------------------> 180 °B
A -----------------------> 120 °B
-5 °A -----------------------> 25 °B
[tex]\dfrac{A-(-5)}{80-(-5)}= \dfrac{120-25}{180-25}\\\\\\\dfrac{A+5}{80+5}= \dfrac{95}{155}\\\\\\\dfrac{A+5}{85}= \dfrac{95}{155}\\\\\\Simplifica\:os\:denominadores\:por\:5\\\\\\\dfrac{A+5}{17}= \dfrac{95}{31}\\\\\\Multiplica\:em\:cruz\\\\\\31\cdot (A+5)=17\cdot 95\\\\\\31\cdot (A+5)=1\,615\\\\\\A+5=\dfrac{1\,615}{31}\\\\\\A+5 = 52,1\\\\\\A = 52,1+5\\\\\\\mathbf{A = 57,1\:^oA}[/tex]
Copyright © 2025 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
A = 57,1 °A
================================================================
Para estabelecermos uma relação entre duas escalas termométricas precisamos obter uma proporcionalidade entre elas, tipo uma regra de três.
No nosso caso
a) Comparando as escalas X com a escala Celsius
80 °A -----------------------> 180 °B
A -----------------------> 120 °B
-5 °A -----------------------> 25 °B
[tex]\dfrac{A-(-5)}{80-(-5)}= \dfrac{120-25}{180-25}\\\\\\\dfrac{A+5}{80+5}= \dfrac{95}{155}\\\\\\\dfrac{A+5}{85}= \dfrac{95}{155}\\\\\\Simplifica\:os\:denominadores\:por\:5\\\\\\\dfrac{A+5}{17}= \dfrac{95}{31}\\\\\\Multiplica\:em\:cruz\\\\\\31\cdot (A+5)=17\cdot 95\\\\\\31\cdot (A+5)=1\,615\\\\\\A+5=\dfrac{1\,615}{31}\\\\\\A+5 = 52,1\\\\\\A = 52,1+5\\\\\\\mathbf{A = 57,1\:^oA}[/tex]