O conceito de número complexo teve um desenvolvimento gradual. Começaram a ser utilizados formalmente no século XVI em fórmulas de resolução de equações de terceiro e quarto graus. Dentre os assuntos abordados em números complexos destacamos as operações entre números complexos na forma polar e na forma algébrica.
Considere z1 = 2 + bi, z2 = c + i e z3 = 2(cosα + i senα) números complexos, em que b, c e α são números reais com b diferente de zero e 0 ≤ α ≤ 2π.
Analise as afirmativas a seguir:

I. Se o módulo de z1 for igual ao módulo de z2 então b < c.
II. Existe exatamente um valor de α tal que (z3)3 é um número real.
III. Escrevendo z2 na forma trigonométrica, com argumento β entre 0 e 2π, temos que β ≥ π.
IV. Existem b e c tais que z1 = z2.
V. Se c = 2/b então z1/z2 é um número real.

É correto o que se afirma apenas em:
A) I e II, apenas.
B) II e III, apenas.
C) IV e V, apenas.
D) I, II e III, apenas.
E) II, III, IV e V, apenas.
Please enter comments
Please enter your name.
Please enter the correct email address.
You must agree before submitting.

Lista de comentários


Helpful Social

Copyright © 2024 ELIBRARY.TIPS - All rights reserved.