1) De quantas maneiras podemos colocar 12 peões pretos e 12 peões brancos nos quadros pretos de um tabuleiro de xadrez?
Lista de comentários
vladimir050
O número de maneiras é 32!/8! pois : Para o primeiro peão temos 32 maneiras de coloca-lo Para o segundo peão temos 31 maneiras de coloca-lo Para o terceiro peão temos 30 maneiras de coloca-lo Para o quarto peão temos 29 maneiras de coloca-lo . . . Para o vigésimo quarto peão temos 9 maneiras de coloca-lo
1 votes Thanks 1
LinMdias
Obrigada. eu tinha feito 32!/ 24!8! valeu :)
Papamonha
Escolhendo as 24 casas pretas para os peões: C(32,24). Agora, devemos permutar os peões. Como temos 12 peões pretos idênticos e 12 brancos também idênticos, pensando como anagrama, devemos tirar as repetições. Então: 24!/(12!12!) A quantidade de maneiras será: C(32,24).24!/(12!12!)
0 votes Thanks 0
LinMdias
Oi na verdade eu consegui chegar no resultado como sendo uma permutação 32! / 12! . 12! . 8!
Lista de comentários
Para o primeiro peão temos 32 maneiras de coloca-lo
Para o segundo peão temos 31 maneiras de coloca-lo
Para o terceiro peão temos 30 maneiras de coloca-lo
Para o quarto peão temos 29 maneiras de coloca-lo
.
.
.
Para o vigésimo quarto peão temos 9 maneiras de coloca-lo
C(32,24).
Agora, devemos permutar os peões. Como temos 12 peões pretos idênticos e 12 brancos também idênticos, pensando como anagrama, devemos tirar as repetições. Então:
24!/(12!12!)
A quantidade de maneiras será:
C(32,24).24!/(12!12!)