A integral [tex]\int\limitsa \int\limits \int\limi_{A}[/tex] xy²dxdydz, onde A é a região definida por x²+y²=a², 0 ≤ z ≤ 5, pode ser reescrita em coordenadas esféricas como:

Escolha uma:

(a). π∫0 a/2∫0 5/2∫0 r² cos²(θ)sen²(θ)dzdrdθ
(b). 2π∫0 a∫0 5∫0 r^4cos(θ)sen²(θ)dzdrdθ
(c). 2π∫0 a∫0 5∫0 r^4/4 tg(θ)cotg(θ)dzdrdθ
(d). 2π∫0 2a∫0 5/2∫0 r sen(θ)cos(θ)dzdrdθ
(e). π/2∫0 a/2∫0 5/2∫0 r^3 sen³(θ)cos³(θ)dzdrdθ
Please enter comments
Please enter your name.
Please enter the correct email address.
You must agree before submitting.

Lista de comentários


Helpful Social

Copyright © 2024 ELIBRARY.TIPS - All rights reserved.