A integral [tex]\int\limitsa \int\limits \int\limi_{A}[/tex] xy²dxdydz, onde A é a região definida por x²+y²=a², 0 ≤ z ≤ 5, pode ser reescrita em coordenadas esféricas como:

Escolha uma:

(a). π∫0 a/2∫0 5/2∫0 r² cos²(θ)sen²(θ)dzdrdθ
(b). 2π∫0 a∫0 5∫0 r^4cos(θ)sen²(θ)dzdrdθ
(c). 2π∫0 a∫0 5∫0 r^4/4 tg(θ)cotg(θ)dzdrdθ
(d). 2π∫0 2a∫0 5/2∫0 r sen(θ)cos(θ)dzdrdθ
(e). π/2∫0 a/2∫0 5/2∫0 r^3 sen³(θ)cos³(θ)dzdrdθ
Please enter comments
Please enter your name.
Please enter the correct email address.
You must agree before submitting.

Lista de comentários


More Questions From This User See All

Helpful Social

Copyright © 2025 ELIBRARY.TIPS - All rights reserved.