1) L’entreprise produit, avant emballage, 10000 pains par semaine. On considère la variable aléatoire Y mesurant le nombre de pains refusés par semaine. Le contrôle qualité se fait sur un échantillon de 50 pains prélevé dans les pains de la semaine. Si dans l’échantillon observé, on compte 5 pains refusés, donner une estimation de la proportion de pains refusés dans la production de la semaine, au degré de confiance de 95%.
2) Le coût de revient d’un pain s’élève à 0,3 €, son prix de vente s’élève à 0,8 €. Les pains refusés sont distribués gratuitement à une association humanitaire. Les frais fixes mensuels s’élèvent à 2000€. On suppose que le nombre de pains refusés chaque mois suit une loi normale de paramètres (2700,100) a) Pour une production mensuelle de 40000 pains, déterminer la loi suivie par le bénéfice R mensuel. b) Déterminer la probabilité que le bénéfice soit bien positif.
00M
j’ai les mêmes exercices que toi, je pense qu’on suit les memes cours, je voulais savoir si tu as eu les corrections, j’en aurais vraiment besoin, ce serait super bien, s’il te plaît, j’espere que tu liras mon message et que tu pourras m’expliquer en MP. Merci d’avance.
Lista de comentários
Réponse :
Explications étape par étape :
■ bonjour Lola !
■ j' espérais que notre Ami Caylus - par exemple - se penche
sur Ton exercice ... j' espère qu' il n' a pas croisé le corona
de façon grave ...
■ 1°) 5 pains refusés sur 50 --> 10% de refus .
■ mais l' échantillon étudié est petit ( ridicule par rapport
à la produc hebdomadaire ! )
■ écart voisin de 1,4% ( car 10/√50 ≈ 1,4 )
■ le cours dit que le pourcentage "réel" de refus doit être
compris entre 10-2x1,4 = 10-2,8 = 7,2% et 12,8%
( avec 95% de confiance )
■ d' où le nombre de pains refusés ( Nr ) par semaine :
720 < Nr < 1280 pains .
■ 2°) le bénéfice ou Résultat mensuel :
charges = 2ooo € + 0,3o€/pain x 40ooo pains
= 14ooo €
recettes = 0,8x(40ooo - N) = 32ooo - 0,8 N
avec N = nombre de pains refusés par mois
Résultat = 32ooo - 14ooo - 0,8 N
= 18ooo - 0,8 N
si on veut R > 0 --> N < 22500 pains .
On est donc certain que le Bénéfice sera bien positif !
■ 2°) méthode de la loi normale :
2400 < N < 3000 pains refusés ( avec ≈ 100% de confiance )
donc : 15600 € < Résultat mensuel < 16080 €