Articles
Register
Sign In
Search
Adtht12
@Adtht12
May 2019
1
60
Report
Bonjour, pouvez vous m’aidez pour ce dm de mathématiques de terminal S svp ? (Exo 2)
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
scoladan
Verified answer
Bonjour,
Ex 2) f(x) = sin(2x)
1) sin(2x) = sin(x + x) = sin(x)cos(x) + cos(x)sin(x) = 2sin(x)cos(x)
2) f(-x) = sin(-2x) = -sin(2x) = -f(x)
⇒ f est impaire
On peut réduire l'étude à [0;+∞[ et la courbe représentative est symétrique par rapport à l'origine.
3) Existe-t-il T∈R tel que f(x + T) = f(x) ?
f(x + T) = sin(2(x + T)) = sin(2x + 2T)
La fonction sinus a une période de 2π.
⇒ 2T = 2π ⇒ T = π
f est périodique de période π.
⇒ On peut limiter son étude à tout intervalle d'amplitude π.
4) D'après ce qui précède, on peut limiter l'étude à [0;π] ou à [-π/2;π/2]
De plus f est impaire. Donc on peut réduire l'intervalle d'étude à [0;π/]
5) f(x) = sin(2x) = 2sin(x)cos(x) de la forme 2 x u x v
⇒ f'(x) = 2 [cos(x)cos(x) - sin(x)sin(x)]
⇔ f'(x) = 2[cos²(x) - sin²(x)]
⇔ f'(x) = 2[cos(x) + sin(x)][cos(x) - sin(x)]
Sur [0;π/2], sin(x) et cos(x) sont positifs ou nuls
x 0 π/4 π/2
cos(x) 1 + √2/2 + 0
sin(x) 0 + √2/2 + 1
cos(x) + sin(x) + +
cos(x) - sin(x) + 0 -
f'(x) + 0 -
f(x) 0 croissante 1 décroissante 0
6) f'(x) = 2cos(2x)
⇔ f'(x) = 2cos(x + x)
⇔ f'(x) = 2[cos(x)cos(x) - sin(x)sin(x)]
⇔ f'(x) = 2[cos²(x) - sin²(x)]
⇔ f'(x) = 2[2cos²(x) - 1]
Signe de f'(x) :
2cos²(x) - 1 = 0
⇔ cos²(x) = 1/2
⇔ cos(x) = √(1/2) = √(2)/2 ⇒ x = π/4
⇒ f'(x) ≥ 0 sur [0;π/4] et ≤0 sur [π/4;π/2]
x 0 π/4 π/2
f'(x) + 0 -
f(x) crois. décrois.
7) graphique..
2 votes
Thanks 1
More Questions From This User
See All
adtht12
June 2021 | 0 Respostas
Responda
adtht12
January 2021 | 0 Respostas
Bonjour, pouvez vous m'aider pour un dm de math de terminal S svp ? (Exo 1)
Responda
adtht12
January 2021 | 0 Respostas
Responda
adtht12
January 2021 | 0 Respostas
Responda
adtht12
January 2021 | 0 Respostas
Responda
Adtht12
May 2019 | 0 Respostas
Responda
Adtht12
May 2019 | 0 Respostas
Responda
Adtht12
May 2019 | 0 Respostas
Responda
Adtht12
May 2019 | 0 Respostas
Responda
Adtht12
May 2019 | 0 Respostas
Responda
×
Report "Bonjour, pouvez vous m’aidez pour ce dm de mathématiques de terminal S svp ? (Exo 2).... Pergunta de ideia de Adtht12"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Bonjour,Ex 2) f(x) = sin(2x)
1) sin(2x) = sin(x + x) = sin(x)cos(x) + cos(x)sin(x) = 2sin(x)cos(x)
2) f(-x) = sin(-2x) = -sin(2x) = -f(x)
⇒ f est impaire
On peut réduire l'étude à [0;+∞[ et la courbe représentative est symétrique par rapport à l'origine.
3) Existe-t-il T∈R tel que f(x + T) = f(x) ?
f(x + T) = sin(2(x + T)) = sin(2x + 2T)
La fonction sinus a une période de 2π.
⇒ 2T = 2π ⇒ T = π
f est périodique de période π.
⇒ On peut limiter son étude à tout intervalle d'amplitude π.
4) D'après ce qui précède, on peut limiter l'étude à [0;π] ou à [-π/2;π/2]
De plus f est impaire. Donc on peut réduire l'intervalle d'étude à [0;π/]
5) f(x) = sin(2x) = 2sin(x)cos(x) de la forme 2 x u x v
⇒ f'(x) = 2 [cos(x)cos(x) - sin(x)sin(x)]
⇔ f'(x) = 2[cos²(x) - sin²(x)]
⇔ f'(x) = 2[cos(x) + sin(x)][cos(x) - sin(x)]
Sur [0;π/2], sin(x) et cos(x) sont positifs ou nuls
x 0 π/4 π/2
cos(x) 1 + √2/2 + 0
sin(x) 0 + √2/2 + 1
cos(x) + sin(x) + +
cos(x) - sin(x) + 0 -
f'(x) + 0 -
f(x) 0 croissante 1 décroissante 0
6) f'(x) = 2cos(2x)
⇔ f'(x) = 2cos(x + x)
⇔ f'(x) = 2[cos(x)cos(x) - sin(x)sin(x)]
⇔ f'(x) = 2[cos²(x) - sin²(x)]
⇔ f'(x) = 2[2cos²(x) - 1]
Signe de f'(x) :
2cos²(x) - 1 = 0
⇔ cos²(x) = 1/2
⇔ cos(x) = √(1/2) = √(2)/2 ⇒ x = π/4
⇒ f'(x) ≥ 0 sur [0;π/4] et ≤0 sur [π/4;π/2]
x 0 π/4 π/2
f'(x) + 0 -
f(x) crois. décrois.
7) graphique..