Articles
Register
Sign In
Search
Carlvoyager
@Carlvoyager
January 2020
1
58
Report
Considere os números reais a, b e c. Sabendo que a^6=22^4, b^3=22^5 e c^33=22^4, o valor de (a.b.c)^1.222.... é:
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
marcosnobre5
A^6 = 22^4 ⇒ a = 22^(4/6)
b^3 = 22^5 ⇒ b = 22^(5/3)
c^33 = 22^4 ⇒ c = 22^(4/33)
(a.b.c) = 22^(4/6) . 22^(5/3) . 22^(4/33)
(a.b.c) = 22^(4/6+5/3+4/33)
(a.b.c) = 22^(162/66)
(a.b.c)^1.222 = (a.b.c)^(11/9)
(a.b.c)^(11/9) = [22^(162/66)]^(11/9)
(a.b.c)^(11/9) = 22^(162/66 * 11/9)
(a.b.c)^(11/9) = 22^(1782/594)
(a.b.c)^(11/9) = 22^3 = 10648
0 votes
Thanks 2
Carlvoyager
Valeu! Solução de um mestre no assunto!
marcosnobre5
haha! que nada!
More Questions From This User
See All
Carlvoyager
January 2020 | 0 Respostas
Qual a quantidade de algarismos no numero 4^6.5^7 ?
Responda
Carlvoyager
January 2020 | 0 Respostas
Responda
Recomendar perguntas
Deividyfreitas
May 2020 | 0 Respostas
BlackShot
May 2020 | 0 Respostas
Vanessakellen
May 2020 | 0 Respostas
Guiduarter
May 2020 | 0 Respostas
Mrzaine
May 2020 | 0 Respostas
O QUE SERIA AUTONOMIA?
Grazifer
May 2020 | 0 Respostas
Joazinho
May 2020 | 0 Respostas
a palavra rapidez formou se de qual derivacao
Celiana
May 2020 | 0 Respostas
Joazinho
May 2020 | 0 Respostas
Anatercia
May 2020 | 0 Respostas
×
Report "Considere os números reais a, b e c. Sabendo que a^6=22^4, b^3=22^5 e c^33=22^4, o valor de (a.b.c)^.... Pergunta de ideia de Carlvoyager"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
b^3 = 22^5 ⇒ b = 22^(5/3)
c^33 = 22^4 ⇒ c = 22^(4/33)
(a.b.c) = 22^(4/6) . 22^(5/3) . 22^(4/33)
(a.b.c) = 22^(4/6+5/3+4/33)
(a.b.c) = 22^(162/66)
(a.b.c)^1.222 = (a.b.c)^(11/9)
(a.b.c)^(11/9) = [22^(162/66)]^(11/9)
(a.b.c)^(11/9) = 22^(162/66 * 11/9)
(a.b.c)^(11/9) = 22^(1782/594)
(a.b.c)^(11/9) = 22^3 = 10648