Determinar o termo geral da sequência (8,15,22,29,36...) ( an= a1+(n-1).r )
Lista de comentários
rooseveltbrBem, primeira coisa é encontrar a razão:
A razão de uma P.A. é dada pela divisão de dois termos seguidos, o termo sucessor pelo seu antecessor, isto é:
Agora fica fácil, a formula do termo geral é dada por:
An = a1 + (n-1)*r
Onde An é o valor do termo que se pretende encontrar. a1 é o primeiro termo da P.A. n é a posição do termo que se pretende encontrar. r é a razão da P.A. ou seja a cada posição que se avança esse valor é somado.
Agora fica fácil né?
An = a1 + (n - 1)*r => An = 8 + (n - 1)*7
I hope you like it
3 votes Thanks 9
IagoCardoso
a resposta final é An = a1 + (n - 1)*r => An = 8 + (n - 1)*7 ?
rooseveltbr
sim, onde n será o termo que você deseja encontrar, pois se trata de uma p.a.
rooseveltbr
na vdd o que a questão quer determinar mesmo é que você encontre a razão e substitua os valores na formula, o enunciado pede algo a mais? como por exemplo determine o termo 20º da p.a. ... ou algo do tipo?
IagoCardoso
o enunciado é somente isso que eu postei.
rooseveltbr
então é isso amigo, espero que tenha ajudado (:
Lista de comentários
A razão de uma P.A. é dada pela divisão de dois termos seguidos, o termo sucessor pelo seu antecessor, isto é:
Agora fica fácil, a formula do termo geral é dada por:
An = a1 + (n-1)*r
Onde An é o valor do termo que se pretende encontrar.
a1 é o primeiro termo da P.A.
n é a posição do termo que se pretende encontrar.
r é a razão da P.A. ou seja a cada posição que se avança esse valor é somado.
Agora fica fácil né?
An = a1 + (n - 1)*r => An = 8 + (n - 1)*7
I hope you like it