Resposta:
c)2.05.................
Alternativa a)
Explicação passo-a-passo:
Fazendo (x − 7)/(√x + √7) = 1, temos
(√x − √7)(√x + √7)/(√x + √7) = 1
(√x − √7)(√x + √7)/(√x + √7) = 1, [Eliminamos os termos semelhantes]
(√x − √7)/1 = 1
√x − √7 = 1
√x = 1 + √7
x = (1 + √7)^2
Substituindo (1 + √7)^2 em f, temos:
f[(x − 7)/(√x + √7)] = √(log x), [Já sabemos que f[(x − 7)/(√x + √7)] = f[√x − √7]
f[√x − √7] = √(log x)
f[√(1 + √7)^2) − √7] = √(log[(1 + √7)^2 ])
f[1 + √7 − √7] = √(2log[1 + √7])
f[1] = √(2log[1 + √7])
f[1] ≈ 1.059988, [Arredondando para 1.06]
f[1] ≈ 1.06
Sabendo f[√x − √7], repetimos o mesmo processo para cada caso, agora, para f(2):
√x − √7 = 2
√x = 2 + √7
x = (2 + √7)^2
f[√(2 + √7)^2 − √7] = √(log[(2 + √7)^2 ])
f[2 + √7 − √7] = √(2log[2 + √7])
f[2] ≈ 1.15
Para f(3):
√x − √7 = 3
x = (3 + (√7))^2
f[√(3 + √7)^2 − √7] = √(log[(3 + (√7))^2 ])
f[3 + √7 − √7] = √(2log[3 + √7])
f[3] = √(2log[3 + √7])
f[3] ≈ 1.23
Para f(4):
√x − √7 = 4
√x = 4 + √7
x = (4 + √7)^2
f[√(4 + √7)^2 − √7] = √(log[(4 + √7)^2])
f[4 + √7 − √7] = √(2log[4 + √7])
f[4] = √(2log[4 + √7])
f[4] ≈ 1.28
Se f[(x − 7)/(√x + √7)] = √(log x), vamos determinar f[(f(1) + f(2))/(f(3) + f(4))] igualando:
(x − 7)/(√x + √7) = (f(1) + f(2))/(f(3) + f(4))
(x − 7)/(√x + √7) = (1.06 + 1.15)/(1.23 + 1.28)
(x − 7)/(√x + √7) = 0.88
√x − √7 = 0.88
x = (0.88 + √7)^2
f[(x − 7)/(√x + √7)] = √(log x)
f(√x − √7) = √(log[(0.88 + √7)^2])
f[(√(0.88 + √7)^2 − √7] = √(2log[0.88 + √7])
f[0.88 + √7 − √7] = √(2log[0.88 + √7])
f[0.88] = √(2log[0.88 + √7])
f(0.88) ≈ 1.05
∴ Pode-se dizer que, sendo f[(x − 7)/(√x + √7)] = √(log x), f[(f(1) + f(2)))/(f(3) + f(4)))] ≈ 1.05
Copyright © 2025 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Resposta:
c)2.05.................
Resposta:
Alternativa a)
Explicação passo-a-passo:
Fazendo (x − 7)/(√x + √7) = 1, temos
(√x − √7)(√x + √7)/(√x + √7) = 1
(√x − √7)(√x + √7)/(√x + √7) = 1, [Eliminamos os termos semelhantes]
(√x − √7)/1 = 1
√x − √7 = 1
√x = 1 + √7
x = (1 + √7)^2
Substituindo (1 + √7)^2 em f, temos:
f[(x − 7)/(√x + √7)] = √(log x), [Já sabemos que f[(x − 7)/(√x + √7)] = f[√x − √7]
f[√x − √7] = √(log x)
f[√(1 + √7)^2) − √7] = √(log[(1 + √7)^2 ])
f[1 + √7 − √7] = √(2log[1 + √7])
f[1] = √(2log[1 + √7])
f[1] ≈ 1.059988, [Arredondando para 1.06]
f[1] ≈ 1.06
Sabendo f[√x − √7], repetimos o mesmo processo para cada caso, agora, para f(2):
√x − √7 = 2
√x = 2 + √7
x = (2 + √7)^2
f[√x − √7] = √(log x)
f[√(2 + √7)^2 − √7] = √(log[(2 + √7)^2 ])
f[2 + √7 − √7] = √(2log[2 + √7])
f[2] ≈ 1.15
Para f(3):
√x − √7 = 3
x = (3 + (√7))^2
f[√x − √7] = √(log x)
f[√(3 + √7)^2 − √7] = √(log[(3 + (√7))^2 ])
f[3 + √7 − √7] = √(2log[3 + √7])
f[3] = √(2log[3 + √7])
f[3] ≈ 1.23
Para f(4):
√x − √7 = 4
√x = 4 + √7
x = (4 + √7)^2
f[√x − √7] = √(log x)
f[√(4 + √7)^2 − √7] = √(log[(4 + √7)^2])
f[4 + √7 − √7] = √(2log[4 + √7])
f[4] = √(2log[4 + √7])
f[4] ≈ 1.28
Se f[(x − 7)/(√x + √7)] = √(log x), vamos determinar f[(f(1) + f(2))/(f(3) + f(4))] igualando:
(x − 7)/(√x + √7) = (f(1) + f(2))/(f(3) + f(4))
(x − 7)/(√x + √7) = (1.06 + 1.15)/(1.23 + 1.28)
(x − 7)/(√x + √7) = 0.88
√x − √7 = 0.88
x = (0.88 + √7)^2
f[(x − 7)/(√x + √7)] = √(log x)
f(√x − √7) = √(log[(0.88 + √7)^2])
f[(√(0.88 + √7)^2 − √7] = √(2log[0.88 + √7])
f[0.88 + √7 − √7] = √(2log[0.88 + √7])
f[0.88] = √(2log[0.88 + √7])
f(0.88) ≈ 1.05
∴ Pode-se dizer que, sendo f[(x − 7)/(√x + √7)] = √(log x), f[(f(1) + f(2)))/(f(3) + f(4)))] ≈ 1.05