Resposta:
[tex]\textsf{Leia abaixo}[/tex]
Explicação passo a passo:
[tex]\mathsf{M = \dfrac{C \times ((1 +(i / 100))^n - 1)} {i / 100}}[/tex]
[tex]\mathsf{M = \dfrac{10.000 \times ((1 +(0,02))^{60} - 1)} {0,02}}[/tex]
[tex]\mathsf{M = \dfrac{10.000 \times ((1,02)^{60} - 1)} {0,02}}[/tex]
[tex]\mathsf{M = \dfrac{10.000 \times ([\:(1,02)^{30}\:]^2 - 1)} {0,02}}[/tex]
[tex]\mathsf{M = \dfrac{10.000 \times ([1,8]^2 - 1)} {0,02}}[/tex]
[tex]\mathsf{M = \dfrac{10.000 \times (3,24 - 1)} {0,02}}[/tex]
[tex]\mathsf{M = \dfrac{10.000 \times 2,24} {0,02}}[/tex]
[tex]\mathsf{M = \dfrac{22.400} {0,02}}[/tex]
[tex]\boxed{\boxed{\mathsf{M = R\$\:1.120.000,00}}}[/tex]
Copyright © 2025 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Resposta:
[tex]\textsf{Leia abaixo}[/tex]
Explicação passo a passo:
[tex]\mathsf{M = \dfrac{C \times ((1 +(i / 100))^n - 1)} {i / 100}}[/tex]
[tex]\mathsf{M = \dfrac{10.000 \times ((1 +(0,02))^{60} - 1)} {0,02}}[/tex]
[tex]\mathsf{M = \dfrac{10.000 \times ((1,02)^{60} - 1)} {0,02}}[/tex]
[tex]\mathsf{M = \dfrac{10.000 \times ([\:(1,02)^{30}\:]^2 - 1)} {0,02}}[/tex]
[tex]\mathsf{M = \dfrac{10.000 \times ([1,8]^2 - 1)} {0,02}}[/tex]
[tex]\mathsf{M = \dfrac{10.000 \times (3,24 - 1)} {0,02}}[/tex]
[tex]\mathsf{M = \dfrac{10.000 \times 2,24} {0,02}}[/tex]
[tex]\mathsf{M = \dfrac{22.400} {0,02}}[/tex]
[tex]\boxed{\boxed{\mathsf{M = R\$\:1.120.000,00}}}[/tex]