[tex]\dfrac{5\pi}{12}[/tex]
================================================================
A soma dos ângulos internos de um triângulo é igual a 180° ou π radianos.
Na questão é usada a medida em radianos.
Então, considerando os ângulos
[tex]\^angulo\:1:\dfrac{\pi }{4} \\\\\\\^angulo\:2:\dfrac{\pi }{3} \\\\\\\^angulo\:3:x[/tex]
A soma deve resultar π
[tex]\dfrac{\pi}{4} +\dfrac{\pi}{3}+x =\pi\\\\\\MMC(4,3)=12\\\\\\\dfrac{3\pi+4\pi+12x}{12}=\dfrac{12\pi}{12} \\\\\\Cancela\:\:os\:\:denominadores\\\\\\3\pi+4\pi+12x=12\pi\\\\\\12x = 12\pi-3\pi-4\pi\\\\\\12x = 5\pi\\\\\\x =\dfrac{5\pi}{12}[/tex]
Resposta:
[tex] \frac{5\pi}{12} [/tex]
Explicação passo-a-passo:
[tex] \frac{\pi}{4} + \frac{\pi}{3} + x = \pi[/tex]
[tex]mmc = 12[/tex]
[tex]3\pi + 4\pi + 12x = 12\pi[/tex]
[tex]12x = 12\pi - 3\pi - 4\pi \\ 12x = 5\pi \\ x = \frac{5\pi}{12} [/tex]
Copyright © 2025 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
O terceiro ângulo é
[tex]\dfrac{5\pi}{12}[/tex]
================================================================
A soma dos ângulos internos de um triângulo é igual a 180° ou π radianos.
Na questão é usada a medida em radianos.
Então, considerando os ângulos
[tex]\^angulo\:1:\dfrac{\pi }{4} \\\\\\\^angulo\:2:\dfrac{\pi }{3} \\\\\\\^angulo\:3:x[/tex]
A soma deve resultar π
[tex]\dfrac{\pi}{4} +\dfrac{\pi}{3}+x =\pi\\\\\\MMC(4,3)=12\\\\\\\dfrac{3\pi+4\pi+12x}{12}=\dfrac{12\pi}{12} \\\\\\Cancela\:\:os\:\:denominadores\\\\\\3\pi+4\pi+12x=12\pi\\\\\\12x = 12\pi-3\pi-4\pi\\\\\\12x = 5\pi\\\\\\x =\dfrac{5\pi}{12}[/tex]
Resposta:
[tex] \frac{5\pi}{12} [/tex]
Explicação passo-a-passo:
[tex] \frac{\pi}{4} + \frac{\pi}{3} + x = \pi[/tex]
[tex]mmc = 12[/tex]
[tex]3\pi + 4\pi + 12x = 12\pi[/tex]
[tex]12x = 12\pi - 3\pi - 4\pi \\ 12x = 5\pi \\ x = \frac{5\pi}{12} [/tex]