Para responder às suas perguntas, precisamos considerar as relações de equilíbrio químico e os coeficientes estequiométricos das reações envolvidas.
1. Cálculo do número de mols de CO2 formados pela combustão de 3,0 × 10^24 moléculas de gás etano (C2H6):
A equação balanceada para a combustão completa do etano (C2H6) é:
C2H6 + 7/2 O2 -> 2 CO2 + 3 H2O
Observando a equação, podemos ver que para cada molécula de etano que reage, são formadas 2 moléculas de dióxido de carbono (CO2). Portanto, a relação estequiométrica é de 1:2.
Primeiro, precisamos converter o número de moléculas de etano para o número de mols de etano:
Número de mols de etano = (3,0 × 10^24 moléculas) / Avogadro's number
Onde Avogadro's number é aproximadamente 6,022 × 10^23 moléculas/mol.
Número de mols de etano = (3,0 × 10^24) / (6,022 × 10^23) = 4,98 mol
Agora, podemos calcular o número de mols de CO2 formados:
Número de mols de CO2 = 2 × Número de mols de etano
Número de mols de CO2 = 2 × 4,98 mol = 9,96 mol
Portanto, a combustão de 3,0 × 10^24 moléculas de gás etano forma aproximadamente 9,96 mols de CO2.
2. Cálculo do número de moléculas de amônia obtido a partir da reação de 1,5 × 10^19 moléculas de hidrogênio com nitrogênio:
A equação balanceada para a síntese da amônia (NH3) é:
N2 + 3 H2 -> 2 NH3
Observando a equação, podemos ver que para cada 3 moléculas de hidrogênio (H2) que reagem, são formadas 2 moléculas de amônia (NH3). Portanto, a relação estequiométrica é de 3:2.
Primeiro, precisamos converter o número de moléculas de hidrogênio para o número de mols de hidrogênio:
Número de mols de hidrogênio = (1,5 × 10^19 moléculas) / Avogadro's number
Número de mols de hidrogênio = (1,5 × 10^19) / (6,022 × 10^23) = 2,49 × 10^-5 mol
Agora, podemos calcular o número de moléculas de amônia formadas:
Número de moléculas de amônia = (2/3) × Número de mols de hidrogênio
Número de moléculas de amônia = (2/3) × (2,49 × 10^-5) = 1,66 × 10^-5
Portanto, a reação de 1,5 × 10^19 moléculas de hidrogênio com nit
rogênio forma aproximadamente 1,66 × 10^-5 moléculas de amônia.
Lista de comentários
Resposta:
Para responder às suas perguntas, precisamos considerar as relações de equilíbrio químico e os coeficientes estequiométricos das reações envolvidas.
1. Cálculo do número de mols de CO2 formados pela combustão de 3,0 × 10^24 moléculas de gás etano (C2H6):
A equação balanceada para a combustão completa do etano (C2H6) é:
C2H6 + 7/2 O2 -> 2 CO2 + 3 H2O
Observando a equação, podemos ver que para cada molécula de etano que reage, são formadas 2 moléculas de dióxido de carbono (CO2). Portanto, a relação estequiométrica é de 1:2.
Primeiro, precisamos converter o número de moléculas de etano para o número de mols de etano:
Número de mols de etano = (3,0 × 10^24 moléculas) / Avogadro's number
Onde Avogadro's number é aproximadamente 6,022 × 10^23 moléculas/mol.
Número de mols de etano = (3,0 × 10^24) / (6,022 × 10^23) = 4,98 mol
Agora, podemos calcular o número de mols de CO2 formados:
Número de mols de CO2 = 2 × Número de mols de etano
Número de mols de CO2 = 2 × 4,98 mol = 9,96 mol
Portanto, a combustão de 3,0 × 10^24 moléculas de gás etano forma aproximadamente 9,96 mols de CO2.
2. Cálculo do número de moléculas de amônia obtido a partir da reação de 1,5 × 10^19 moléculas de hidrogênio com nitrogênio:
A equação balanceada para a síntese da amônia (NH3) é:
N2 + 3 H2 -> 2 NH3
Observando a equação, podemos ver que para cada 3 moléculas de hidrogênio (H2) que reagem, são formadas 2 moléculas de amônia (NH3). Portanto, a relação estequiométrica é de 3:2.
Primeiro, precisamos converter o número de moléculas de hidrogênio para o número de mols de hidrogênio:
Número de mols de hidrogênio = (1,5 × 10^19 moléculas) / Avogadro's number
Número de mols de hidrogênio = (1,5 × 10^19) / (6,022 × 10^23) = 2,49 × 10^-5 mol
Agora, podemos calcular o número de moléculas de amônia formadas:
Número de moléculas de amônia = (2/3) × Número de mols de hidrogênio
Número de moléculas de amônia = (2/3) × (2,49 × 10^-5) = 1,66 × 10^-5
Portanto, a reação de 1,5 × 10^19 moléculas de hidrogênio com nit
rogênio forma aproximadamente 1,66 × 10^-5 moléculas de amônia.