Articles
Register
Sign In
Search
VictoriaRuffo
@VictoriaRuffo
May 2020
1
88
Report
RESOLVENDO COM A FÓRMULA DE BHÁSKARA.
Vamos determinar as raízes da equações do 2° Grau sendo U= IR.
A)
B) x+ _x²_ +4_ =2
5
C)_x²_ ₋ _x _+12_= 2x
2 3
D) _x(x+1)_ ₋ _x ₋ 5_ = _5( 2x ₋ 1)_
4 12 6
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
eluciamonteiro
Verified answer
A)
x²
-
4x
=
1
5 5 mmc = 5
5x² - 4x = 1
5 elimina denominador 5
5x² - 4x = 1
5x² - 4x - 1 = 0
a = 5 b = - 4 c = - 1
Δ = b² - 4.a.c
Δ = (- 4)² - 4.(5).(- 1)
Δ = + 16 + 20
Δ = 36
x =
- b ± √Δ
2.a
x =
- (- 4)
±
√36
2.5
x =
+ 4
± 6
10
x' =
4 + 6
=
10
= 1
10 10
x" =
4 - 6
= -
2
÷ 2 = -
1
10 10
÷ 2 5
S[- 1/5 , 1]
B) x +
x² + 4
= 2
5 mmc = 5
5x + x² + 4 = 10
5 elimina denominador 5
5x + x² + 4 = 10
x² + 5x + 4 - 10 = 0
x² + 5x - 6 = 0
a = 1 b = + 5 c = - 6
Δ = b² - 4.a.c
Δ = (5)² - 4.(1).(- 6)
Δ = + 25 + 24
Δ = 49
x =
- b ± √Δ
2.a
x =
- (+5)
±
√49
2.1
x =
- 5
± 7
2
x' =
- 5 + 7
=
2
= 1
2 2
x" =
- 5 - 7
= -
12
= - 6
2 2
S[- 6 , 1]
C)
x²
-
x + 12
= 2x
2 3 mmc(2,3) = 6
3x² - 2.(x + 12) = 12x
6 elimina denominador 6
3x² - 2.(x + 12) = 12x
3x² - 2x - 24 = 12x
3x² - 2x - 12x - 24 = 0
3x² - 14x - 24 = 0
a = 3 b = - 14 c = - 24
Δ = b² - 4.a.c
Δ = (-14)² - 4.(3).(- 24)
Δ = 196 + 288
Δ = 484
x =
- b ± √Δ
2.a
x =
- (-14)
±
√484
2.3
x =
14
± 22
6
x' =
14 +22
=
36
= 6
6 6
x" =
14 - 22
= -
8
÷ 2 = -
4
6 6 ÷ 2 3
S[- 4/3 , 6]
D)
x.(x + 1)
-
x - 5
=
5.(2x - 1)
4 12 6 mmc(4,6,12) = 12
3x.(x + 1) - x - 5 = 10.(2x - 1)
12 elimina denominador 12
3x.(x + 1) - x - 5 = 10.(2x - 1)
3x² + 3x - x - 5 = 20x - 10
3x² + 3x- x - 20x - 5 + 10 = 0
3x² + 3x - 21x + 5 = 0
3x² - 18x + 5 = 0
a = 3 b = - 18 c = + 5
Δ = b² - 4.a.c
Δ = (-18)² - 4.(3).(+5)
Δ = 324 - 60
Δ = 264
x =
- b ± √Δ
2.a
x =
- (-18)
±
√264
fatorando 264 = 2² ×2×3×11
2.3
x =
+ 18
± 2√66
6
x' =
18 +2√66
simplificando 18, 2 e 6 por 2 =
9 + √66
= 3 + √66
6 3
x" =
18 - 2√66
=
9 - √66
simplifica 9 e o 3 por 3 = 3 - √66
6 3
S[3 - √66 , 3 +√66]
2 votes
Thanks 1
More Questions From This User
See All
VictoriaRuffo
October 2020 | 0 Respostas
Responda
VictoriaRuffo
October 2020 | 0 Respostas
Responda
VictoriaRuffo
October 2020 | 0 Respostas
Responda
VictoriaRuffo
October 2020 | 0 Respostas
Responda
VictoriaRuffo
October 2020 | 0 Respostas
Responda
VictoriaRuffo
October 2020 | 0 Respostas
Responda
VictoriaRuffo
October 2020 | 0 Respostas
Responda
VictoriaRuffo
October 2020 | 0 Respostas
Responda
VictoriaRuffo
October 2020 | 0 Respostas
Responda
VictoriaRuffo
October 2020 | 0 Respostas
Responda
Recomendar perguntas
Deividyfreitas
May 2020 | 0 Respostas
BlackShot
May 2020 | 0 Respostas
Vanessakellen
May 2020 | 0 Respostas
Guiduarter
May 2020 | 0 Respostas
Mrzaine
May 2020 | 0 Respostas
O QUE SERIA AUTONOMIA?
Grazifer
May 2020 | 0 Respostas
Joazinho
May 2020 | 0 Respostas
a palavra rapidez formou se de qual derivacao
Celiana
May 2020 | 0 Respostas
Joazinho
May 2020 | 0 Respostas
Anatercia
May 2020 | 0 Respostas
×
Report "RESOLVENDO COM A FÓRMULA DE BHÁSKARA.Vamos determinar as raízes da equações do 2° Grau sendo U= IR.A.... Pergunta de ideia de VictoriaRuffo"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2025 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
A)x² - 4x = 1
5 5 mmc = 5
5x² - 4x = 1
5 elimina denominador 5
5x² - 4x = 1
5x² - 4x - 1 = 0
a = 5 b = - 4 c = - 1
Δ = b² - 4.a.c
Δ = (- 4)² - 4.(5).(- 1)
Δ = + 16 + 20
Δ = 36
x = - b ± √Δ
2.a
x = - (- 4) ± √36
2.5
x = + 4 ± 6
10
x' = 4 + 6 = 10 = 1
10 10
x" = 4 - 6 = - 2 ÷ 2 = - 1
10 10 ÷ 2 5
S[- 1/5 , 1]
B) x + x² + 4 = 2
5 mmc = 5
5x + x² + 4 = 10
5 elimina denominador 5
5x + x² + 4 = 10
x² + 5x + 4 - 10 = 0
x² + 5x - 6 = 0
a = 1 b = + 5 c = - 6
Δ = b² - 4.a.c
Δ = (5)² - 4.(1).(- 6)
Δ = + 25 + 24
Δ = 49
x = - b ± √Δ
2.a
x = - (+5) ± √49
2.1
x = - 5 ± 7
2
x' = - 5 + 7 = 2 = 1
2 2
x" = - 5 - 7 = - 12 = - 6
2 2
S[- 6 , 1]
C) x² - x + 12 = 2x
2 3 mmc(2,3) = 6
3x² - 2.(x + 12) = 12x
6 elimina denominador 6
3x² - 2.(x + 12) = 12x
3x² - 2x - 24 = 12x
3x² - 2x - 12x - 24 = 0
3x² - 14x - 24 = 0
a = 3 b = - 14 c = - 24
Δ = b² - 4.a.c
Δ = (-14)² - 4.(3).(- 24)
Δ = 196 + 288
Δ = 484
x = - b ± √Δ
2.a
x = - (-14) ± √484
2.3
x = 14 ± 22
6
x' = 14 +22 = 36 = 6
6 6
x" = 14 - 22 = - 8 ÷ 2 = - 4
6 6 ÷ 2 3
S[- 4/3 , 6]
D)x.(x + 1) - x - 5 = 5.(2x - 1)
4 12 6 mmc(4,6,12) = 12
3x.(x + 1) - x - 5 = 10.(2x - 1)
12 elimina denominador 12
3x.(x + 1) - x - 5 = 10.(2x - 1)
3x² + 3x - x - 5 = 20x - 10
3x² + 3x- x - 20x - 5 + 10 = 0
3x² + 3x - 21x + 5 = 0
3x² - 18x + 5 = 0
a = 3 b = - 18 c = + 5
Δ = b² - 4.a.c
Δ = (-18)² - 4.(3).(+5)
Δ = 324 - 60
Δ = 264
x = - b ± √Δ
2.a
x = - (-18) ± √264 fatorando 264 = 2² ×2×3×11
2.3
x = + 18 ± 2√66
6
x' = 18 +2√66 simplificando 18, 2 e 6 por 2 = 9 + √66 = 3 + √66
6 3
x" = 18 - 2√66 = 9 - √66 simplifica 9 e o 3 por 3 = 3 - √66
6 3
S[3 - √66 , 3 +√66]