Seja f open parentheses x close parenthesesuma função integrável e phi left parenthesis u right parenthesisuma função inversível e derivável. Assuma que G open parentheses u close parentheses é uma primitiva do produto f left parenthesis phi left parenthesis u right parenthesis right parenthesis phi to the power of straight prime left parenthesis u right parenthesis. Com respeito a integral indefinida da f open parentheses x close parentheses, é correto afirmar que: a. integral f left parenthesis x right parenthesis d x equals G open parentheses phi to the power of negative 1 end exponent left parenthesis x right parenthesis close parentheses plus c b. integral f left parenthesis x right parenthesis d x equals G left parenthesis x right parenthesis plus c c. integral f left parenthesis x right parenthesis d x equals x plus c d. integral f left parenthesis x right parenthesis d x equals phi to the power of negative 1 end exponent left parenthesis G left parenthesis x right parenthesis right parenthesis plus c e. integral f left parenthesis x right parenthesis d x equals G left parenthesis phi left parenthesis x right parenthesis right parenthesis plus c
Lista de comentários
Resposta:
A
Explicação: