Seja f open parentheses x close parenthesesuma função integrável e phi left parenthesis u right parenthesisuma função inversível e derivável. Assuma que G open parentheses u close parentheses é uma primitiva do produto f left parenthesis phi left parenthesis u right parenthesis right parenthesis phi to the power of straight prime left parenthesis u right parenthesis. Com respeito a integral indefinida da f open parentheses x close parentheses, é correto afirmar que: a. integral f left parenthesis x right parenthesis d x equals G open parentheses phi to the power of negative 1 end exponent left parenthesis x right parenthesis close parentheses plus c b. integral f left parenthesis x right parenthesis d x equals G left parenthesis x right parenthesis plus c c. integral f left parenthesis x right parenthesis d x equals x plus c d. integral f left parenthesis x right parenthesis d x equals phi to the power of negative 1 end exponent left parenthesis G left parenthesis x right parenthesis right parenthesis plus c e. integral f left parenthesis x right parenthesis d x equals G left parenthesis phi left parenthesis x right parenthesis right parenthesis plus c
Please enter comments
Please enter your name.
Please enter the correct email address.
You must agree before submitting.

Lista de comentários


More Questions From This User See All

Helpful Social

Copyright © 2025 ELIBRARY.TIPS - All rights reserved.