Resolvendo a equação de primeiro grau, tem-se que o valor de a é igual a 5.
Explicação e resolução:
[tex]\Large\displaystyle\text{${\sf \dfrac{-1+2}{-1-1}+\dfrac{-1-1}{-1+a}= -1}$}[/tex]
[tex]\Large\displaystyle\text{${\sf \dfrac{1}{-2}+\dfrac{-2}{-1+a}= -1}$}[/tex]
[tex]\Large\displaystyle\text{${\sf -\dfrac{1}{2}+\dfrac{-2}{a-1}= -1}$}\\\\\\\Large\displaystyle\text{${\sf\dfrac{-2}{a-1}= -1 +\dfrac{1}{2}}$}\\\\\\\Large\displaystyle\text{${\sf\dfrac{-2}{a-1}= \dfrac{-1}{2}}$}[/tex]
[tex]\Large\displaystyle\text{${\sf -1 \cdot (a-1)= -2 \cdot 2}$}\\\\\\\Large\displaystyle\text{${\sf -a+1= -4}$}\\\\\\\Large\displaystyle\text{${\sf -a= -4-1}$}\\\\\\\Large\displaystyle\text{${\sf -a= -5 \Rightarrow [\times -1]}$}\\\\\\\Large\displaystyle\boxed{\sf a= 5}[/tex]
Saiba mais sobre equação de primeiro grau ⇒ brainly.com.br/tarefa/53295270
Resposta:
[tex]\textsf{Leia abaixo}[/tex]
Explicação passo-a-passo:
[tex] \mathsf{\dfrac{x+2}{x-1}+\dfrac{x-1}{x+a}=x\quad valor~de~a,para, x=-1} [/tex]
[tex] \mathsf{\dfrac{-1+2}{-1-1}+\dfrac{-1-1}{-1+a}=-1 } [/tex]
[tex] \mathsf{\dfrac{1}{-2}+\dfrac{2}{-1+a}=-1 } [/tex]
[tex] \mathsf{-\dfrac{2}{-1+a}=-1+\dfrac{1}{2} } [/tex]
[tex] \mathsf{ -\dfrac{2}{-1+a}=-\dfrac{1}{2}} [/tex]
[tex] \mathsf{\dfrac{2}{-1+a}=\dfrac{1}{2} } [/tex]
[tex] \mathsf{a-1=4 } [/tex]
[tex] \mathsf{a=4+1 } [/tex]
[tex] \boxed{\boxed{\mathsf{a=5}} } [/tex]
Copyright © 2025 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Resolvendo a equação de primeiro grau, tem-se que o valor de a é igual a 5.
Explicação e resolução:
[tex]\Large\displaystyle\text{${\sf \dfrac{-1+2}{-1-1}+\dfrac{-1-1}{-1+a}= -1}$}[/tex]
[tex]\Large\displaystyle\text{${\sf \dfrac{1}{-2}+\dfrac{-2}{-1+a}= -1}$}[/tex]
[tex]\Large\displaystyle\text{${\sf -\dfrac{1}{2}+\dfrac{-2}{a-1}= -1}$}\\\\\\\Large\displaystyle\text{${\sf\dfrac{-2}{a-1}= -1 +\dfrac{1}{2}}$}\\\\\\\Large\displaystyle\text{${\sf\dfrac{-2}{a-1}= \dfrac{-1}{2}}$}[/tex]
[tex]\Large\displaystyle\text{${\sf -1 \cdot (a-1)= -2 \cdot 2}$}\\\\\\\Large\displaystyle\text{${\sf -a+1= -4}$}\\\\\\\Large\displaystyle\text{${\sf -a= -4-1}$}\\\\\\\Large\displaystyle\text{${\sf -a= -5 \Rightarrow [\times -1]}$}\\\\\\\Large\displaystyle\boxed{\sf a= 5}[/tex]
Saiba mais sobre equação de primeiro grau ⇒ brainly.com.br/tarefa/53295270
Resposta:
[tex]\textsf{Leia abaixo}[/tex]
Explicação passo-a-passo:
[tex] \mathsf{\dfrac{x+2}{x-1}+\dfrac{x-1}{x+a}=x\quad valor~de~a,para, x=-1} [/tex]
[tex] \mathsf{\dfrac{-1+2}{-1-1}+\dfrac{-1-1}{-1+a}=-1 } [/tex]
[tex] \mathsf{\dfrac{1}{-2}+\dfrac{2}{-1+a}=-1 } [/tex]
[tex] \mathsf{-\dfrac{2}{-1+a}=-1+\dfrac{1}{2} } [/tex]
[tex] \mathsf{ -\dfrac{2}{-1+a}=-\dfrac{1}{2}} [/tex]
[tex] \mathsf{\dfrac{2}{-1+a}=\dfrac{1}{2} } [/tex]
[tex] \mathsf{a-1=4 } [/tex]
[tex] \mathsf{a=4+1 } [/tex]
[tex] \boxed{\boxed{\mathsf{a=5}} } [/tex]