urgent !!! On place dans un repère orthonormé. Soit C le cercle de centre G (0;1) et de rayon \sqrt{5} et A le point de coordonnées (4;3). Déterminer l'équation de la tangente à C passant par A . merci
Equation du cercle: x² + (y-1)² = 5 voyons si (4;3) ∈ C : 16 + 4 ≠ 5 => A ∉ C L'équation des droites ∈A : y = ax + b et 3 = 4a + b => b = 3 - 4a T≡ y = ax + 3-4a le reste sur le fichier joint ouf c'était costaud
Lista de comentários
Verified answer
Equation du cercle: x² + (y-1)² = 5voyons si (4;3) ∈ C : 16 + 4 ≠ 5 => A ∉ C
L'équation des droites ∈A : y = ax + b et 3 = 4a + b => b = 3 - 4a
T≡ y = ax + 3-4a
le reste sur le fichier joint
ouf c'était costaud