Algumas empresas que desenvolvem materiais para hospitais, industrias, para pesquisas, entre outros, precisam utilizar produtos radioativos. Uma particularidade destes produtos é a taxa de decaimento quântico das moléculas, algo que impacta as moléculas radioativas presentes nos produtos vendidos por estas empresas. Um certo produto perde ½ exponencialmente de sua eficiência a cada 5 anos. Assim, quanto o produto perderá em eficiência após passar 10 anos? a) 0,3. b) 0,125. c) 0,5. d) 0,25. e) 0,2.
Para determinar a perda de eficiência do produto após 10 anos, precisamos calcular quantos períodos de meia-vida (perda de ½ da eficiência) ocorreram nesse período.
Sabemos que a taxa de decaimento quântico do produto é de ½ a cada 5 anos. Portanto, em 10 anos, ocorreram 10/5 = 2 períodos de meia-vida.
A cada período de meia-vida, a eficiência é reduzida pela metade. Como tivemos 2 períodos de meia-vida, a eficiência do produto será reduzida pela metade duas vezes, ou seja, será multiplicada por 1/2 * 1/2 = 1/4.
Portanto, o produto perderá 1/4 ou 0,25 (25%) de sua eficiência após 10 anos.
Lista de comentários
Resposta:
Para determinar a perda de eficiência do produto após 10 anos, precisamos calcular quantos períodos de meia-vida (perda de ½ da eficiência) ocorreram nesse período.
Sabemos que a taxa de decaimento quântico do produto é de ½ a cada 5 anos. Portanto, em 10 anos, ocorreram 10/5 = 2 períodos de meia-vida.
A cada período de meia-vida, a eficiência é reduzida pela metade. Como tivemos 2 períodos de meia-vida, a eficiência do produto será reduzida pela metade duas vezes, ou seja, será multiplicada por 1/2 * 1/2 = 1/4.
Portanto, o produto perderá 1/4 ou 0,25 (25%) de sua eficiência após 10 anos.
A alternativa correta é:
d) 0,25.