Articles
Register
Sign In
Search
Maxdavisales
@Maxdavisales
November 2019
1
30
Report
Determine a área de um hexágono regular inscrito em uma circunferência de raio r=6cm.
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
woodygm
R = (L √3)/2 ---- 6 = (L√3)/2 ------ 12 = L√3 ----- L = 12/√3 ----- L = (12√3)/3
L = 4√3 →→→→ A = (3 L²√3)/2 ----- A = (3(4√3)² . √3)/2 --- A = (3 (16.3) .√3)/2
A = (3. 48√3)/2 ----- A = 72√3 cm²
0 votes
Thanks 0
More Questions From This User
See All
maxdavisales
July 2023 | 0 Respostas
Alguem ajuda, 50 pontos
Responda
Maxdavisales
January 2020 | 0 Respostas
Responda
Maxdavisales
January 2020 | 0 Respostas
Responda
Maxdavisales
December 2019 | 0 Respostas
Responda
Maxdavisales
November 2019 | 0 Respostas
Responda
Maxdavisales
November 2019 | 0 Respostas
Responda
Maxdavisales
November 2019 | 0 Respostas
Responda
Maxdavisales
May 2019 | 0 Respostas
Responda
Recomendar perguntas
Deividyfreitas
May 2020 | 0 Respostas
BlackShot
May 2020 | 0 Respostas
Vanessakellen
May 2020 | 0 Respostas
Guiduarter
May 2020 | 0 Respostas
Mrzaine
May 2020 | 0 Respostas
O QUE SERIA AUTONOMIA?
Grazifer
May 2020 | 0 Respostas
Joazinho
May 2020 | 0 Respostas
a palavra rapidez formou se de qual derivacao
Celiana
May 2020 | 0 Respostas
Joazinho
May 2020 | 0 Respostas
Anatercia
May 2020 | 0 Respostas
×
Report "Determine a área de um hexágono regular inscrito em uma circunferência de raio r=6cm.... Pergunta de ideia de Maxdavisales"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2025 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
L = 4√3 →→→→ A = (3 L²√3)/2 ----- A = (3(4√3)² . √3)/2 --- A = (3 (16.3) .√3)/2
A = (3. 48√3)/2 ----- A = 72√3 cm²